Skip to content. | Skip to navigation

Personal tools

You are here: Home
1150 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Revision of the Eurybrachidae XVIII. The Australian genus Olonia Stål, 1862: Four new species, new records and biological data (Hemiptera: Fulgoromorpha)
Located in Library / RBINS Staff Publications 2024
Article Reference Revision of the Eurybrachidae (XVII). The new Australian genus Kamabrachys gen. nov. with ten new species (Hemiptera: Fulgoromorpha)
Located in Library / RBINS Staff Publications 2023 OA
Article Reference Revision of the Frasnian marine deposits from the Booischot borehole (Campine Basin, Belgium).
Located in Library / RBINS Staff Publications
Article Reference Revision of the lanternfly genus Limois Stål, 1863 (Hemiptera: Fulgoromorpha: Fulgoridae) with description of a new species from China
Located in Library / RBINS Staff Publications 2020
Article Reference Revision of the Malagasy lanternfly genus Belbian Stal, 1863, with two new species (Hemiptera: Fulgoromorpha: Fulgoridae)
Located in Library / RBINS Staff Publications
Article Reference Revision of the morphology, phylogenetic relationships, behaviour and diversity of the Iberian and Italian ant-like Tachydromia Meigen, 1803 (Diptera: Hybotidae)
Located in Library / RBINS Staff Publications 2021
Article Reference Robber flies from mangroves in Hong Kong (Diptera: Asilidae)
Located in Library / RBINS Staff Publications 2020
Book Reference Ronquières. Documents géologiques
L'exécution du plan incliné de Ronquières sur le canal de Charleroi à Bruxelles a nécessité de multiples études géologiques en vue de la connaissance exacte du sous-sol sous cet important ouvrage. La somme des données géologiques recueillies à cette occasion est sans commune mesure avec les connaissances antérieurement acquises en ce site déjà si particulièrement étudié de la discordance dévonienne du Bord Nord du Bassin de Namur sur le Silurien du Flanc Sud du Massif du Brabant. Le but de ce mémoire est d'assurer la conservation de ces données et d'en tirer profit pour préciser nos connaissances réelles, sans négliger les répercussions des faits nouvellement connus sur l'enseignement géologique traditionnel dont certains concepts devront être précisés ou modifiés. La synthèse de la documentation est présentée en quatre planches annexes : Planche 1. - Situation régionale. En haut: plan de situation et carte géologique de la surface du Primaire. En bas: coupe géologique régionale, réelle dans la partie superficielle, déduite en profondeur d'après les allures régionales. Planche 2. - Coupe géologique axiale du secteur de Ronquières. Planche 3. - Coupes détaillées de la partie Amont. A gauche: coupes sous la Culée, les rangées de colonnes du Pont Canal et la Tête Amont. A droite: coupe axiale et coupes extérieures sous la partie aérienne du Plan Incliné. Planche 4. - Relevé géologique de la tranchée du Plan Incliné.
Located in Library / RBINS Staff Publications
Article Reference Salinity predicts the distribution of chlorophyll a spring peak in the southern North Sea continental waters
In the North Sea, the coastal waters of Belgium and The Netherlands regularly exhibit intense spring phytoplankton blooms where species such as Phaeocystis recurrently form a potential ecological nuisance. In the Belgian and Dutch continental shelves (BCS and DCS), we observe a direct correlation between the chlorophyll a spring maximum (Chlmax) and the nutrients (DIN and DIP) available for the bloom. As the nutrients are themselves strongly correlated with salinity, a rationale is developed to predict Chlmax from winter salinity. The proposed rationale is first tested in a theoretical case with a 3D-biogeochemical model (3D-MIRO&CO). The method is then applied to independent sets of in situ observations over 20 years in the BCS and the DCS, and to continuous FerryBox data in April 2008. Linear regressions explain the relationships between winter nutrients and winter salinity (R2 = 0.88 to 0.97 with model results, and R2 = 0.83 to 0.96 with in situ data). The relationship between Chlmax and the available nutrients across the salinity gradient is also explained by yearly linear regressions (R2 = 0.82 to 0.94 with model results, and R2 = 0.46 to 0.98 with in situ data). Empirical ‘DIP requirement’ and ‘DIN requirement’ for the spring biomass bloom formation are derived from the latter relationships. They depend i.a. on the losses from phytoplankton during the spring bloom formation, and therefore show some interannual variability (8–12% for DIP and 13–20% for DIN). The ratio between nutrient requirements allows predicting in winter which nutrient will eventually limit the spring biomass bloom along the salinity gradient. DIP will generally be limiting in the coastal zone, whereas DIN will generally be limiting offshore, the switch occurring typically at salinity 33.5 in the BCS and 33.6 in the DCS. N reduction should be prioritized to limit Phaeocystis in the coastal zone, with target winter DIN:DIP ratios below 34.4 molN molP−1 in the BCS, or 28.6 molN molP− 1 in the DCS.
Located in Library / RBINS Staff Publications 2019
Article Reference Schubben, veren en melk: een zicht op de geschiedenis van de gewervelden
Located in Library / RBINS Staff Publications