Skip to content. | Skip to navigation

Personal tools

You are here: Home
1614 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference Mandibles from Palaeolithic dogs and Pleistocene wolves at Předmostí, the Czech Republic
Located in Library / RBINS Staff Publications
Article Reference Isotopic evidence for dietary ecology of cave lion (Panthera (leo) spelaea) in North-Western Europe: prey choice, competition and implications for extinction
The prey choice of extinct cave lions Panthera spelaea was determined using bone collagen isotopic signatures in the Belgian Ardennes and the Swabian Jura between 40,000 and 25,000 years ago as well as in the Late-glacial of the northwestern Alp foreland and of the Paris Basin. More than 370 specimens of large carnivorous and herbivorous mammals from 25 sites coeval with cave lion were analyzed. The isotopic results point to an individualistic prey choice for cave lions, with some individuals more oriented on reindeer and others on young cave bears. The isotopic signatures and therefore dietary choice of cave lions did not overlap with those of cave hyenas, indicating competitive exclusion between the large predators. The most recent western European cave lions seem to have been consuming mainly reindeer until the local extirpation of this prey species, which coincides chronologically with their own extinction. This restricted prey choice may be involved in the extinction of this large predator in Western Europe.
Located in Library / RBINS Staff Publications
Article Reference Cave bear (Ursus spelaeus) from Chamber B of the Goyet Cave in Belgium
Located in Library / RBINS Staff Publications
Article Reference Le chien, un ami de 32000 ans
Located in Library / RBINS Staff Publications
Inproceedings Reference Virtual biomechanical analysis of the lower limbs of a Neandertal
Located in Library / RBINS Staff Publications
Inproceedings Reference The Earliest Bats from Europe
Chiroptera is one of the few modern mammal orders for which no fossil record has been associated with the Paleocene-Eocene Thermal Maximum that happened 55.8 million years ago. With the exception of complete skeletons from the early Middle Eocene of the Messel Formation in Germany and the late Early Eocene Green River Formation in Wyoming, all early bats are only represented by isolated elements, mainly teeth and fragmentary jaws, making the diversity and taxonomic affinities more difficult to establish. Here we revise all of the Early Eocene bats from Europe based on dental features, including digitally reconstructed teeth using micro-CT scanning technology of some complete skeletons. The diversity of European early bats is composed of the families Onychonycteridae, Icaronycteridae, Archaeonycteridae, Palaeochiropterygidae, and some of undetermined affinities. Dental features and synapomorphies of each family are characterized for the first time. The earliest bats are dated from the early Early Eocene and are all of small size with lower molars less than 1.3 mm in length. They are represented by: Eppsinycteris anglica from Abbey Wood, east London, England, an onychonycterid with reduced lower p4 and long molars; Archaeonycteris? praecursor from Silveirinha, Portugal, an archaeonycterid with long postcristid on wide lower molars; a new archaeonycterid genus and species from Meudon, North France with long trigonid and shorter postcristid on wide lower molars. These results indicate that the diversity of European Early Eocene bats is higher than previously recognized and that diversification began early in the Early Eocene.
Located in Library / RBINS Staff Publications
Article Reference Prionus antonkozlovi n. sp. de Chine (Coleoptera, Cerambycidae, Prioninae)
Located in Library / RBINS Staff Publications 2021
Article Reference The systematic position of Pamera noctuabunda Bergroth, 1907 (Hemiptera: Heteroptera: Rhyparochromidae), with a revised key to the species of Satlaria Harrington, 1980
Located in Library / RBINS collections by external author(s)
Article Reference The Old World species of Thinodromus Kraatz, 1857 morphologically resembling the former Apocellagria Cameron, 1920 (Coleoptera: Staphylinidae: Oxytelinae)
Located in Library / RBINS collections by external author(s)
Article Reference Is vertebral shape variability in caecilians (Amphibia: Gymnophiona) constrained by forces experienced during burrowing?
Caecilians are predominantly burrowing, elongate, limbless amphibians that have been relatively poorly studied. Although it has been suggested that the sturdy and compact skulls of caecilians are an adaptation to their head-first burrowing habits, no clear relationship between skull shape and burrowing performance appears to exist. However, the external forces encountered during burrowing are transmitted by the skull to the vertebral column, and, as such, may impact vertebral shape. Additionally, the muscles that generate the burrowing forces attach onto the vertebral column and consequently may impact vertebral shape that way as well. Here, we explored the relationships between vertebral shape and maximal in vivo push forces in 13 species of caecilian amphibians. Our results show that the shape of the two most anterior vertebrae, as well as the shape of the vertebrae at 90% of the total body length, is not correlated with peak push forces. Conversely, the shape of the third vertebrae, and the vertebrae at 20% and 60% of the total body length, does show a relationship to push forces measured in vivo. Whether these relationships are indirect (external forces constraining shape variation) or direct (muscle forces constraining shape variation) remains unclear and will require quantitative studies of the axial musculature. Importantly, our data suggest that mid-body vertebrae may potentially be used as proxies to infer burrowing capacity in fossil representatives.
Located in Library / RBINS Staff Publications 2022