Almost nothing is known about the evolution of shell colour in invertebrates. This is largely due to the ultra-rarity of fossils in which colour patterns and pigments are preserved and immediately visible, and therefore easy to identify, especially when these are hundreds of millions of years old. This hampers our understanding of the role and function of colour in extinct animals, their ecology, mode of life, interactions, development, and evolution. A good example for this ultra-rarity is the Palaeozoic of Belgium, world-renowned for its exquisitely preserved fossils of the Devonian and Carboniferous, enabling to document major transitions in ecosystem dynamics and the evolution of life on Earth (e.g. nekton revolution, terrestrialisation, major climate changes, anoxic events, biodiversity crises) but from which only a few cephalopod, bivalve and gastropod mollusc and brachiopod shells were historically documented preserving coloured traces (mostly by L.-G. de Koninck and P. de Ryckholt, mid to late 19th century). However, recently, it was discovered that many more specimens preserve these traces, in particular those from Tournaisian–Viséan shallow marine reef environments, allowing to investigate its occurrence in different evolutionary lineages of marine invertebrates exactly during one of the main periods of revolution in geologic history. In Brain project B2/P233/P2 nicknamed COLOURINPALAEO financed by Belspo, after gathering all the specimens available in the main Belgian collections, we will use different techniques (multispectral photogrammetry and spectro-imaging) to better visualise the preserved colour patterns and pigments. Furthermore, advanced spectroscopic techniques, namely Raman micro-probe spectroscopy, synchrotron trace elemental mapping and absorption spectroscopy, will be used to identify the chemical signature of the pigments as well as their mode and pathways of preservation. Some of the first results on this multidisciplinary study on a unique set of Belgian fossils will be presented.
Located in
Library
/
RBINS Staff Publications 2024
The Famennian (Upper Devonian, c. 372 to 359 Ma) strata of Belgium have recently received much attention after the discoveries of early tetrapod remains and outstandingly preserved continental arthropods. The Strud locality has yielded a diverse flora and fauna including seed-plants, tetrapods, various placoderm, actinopterygian, acanthodian and sarcopterygian fishes, crustaceans (anostracans, notostracans, conchostracans and decapods) and a putative complete insect. This fossil assemblage is one of the oldest continental – probably fresh-water – ecosystems with a considerable vertebrate and invertebrate diversity. The study of the palaeoenvironment of the Strud locality is crucial because it records one of the earliest and most important phases of tetrapod evolution that took place after their emergence but before their terrestrialization. It raises the question of environmental and ecological conditions for the Devonian aquatic ecosystem and the selection pressures occurring at the onset of tetrapod terrestrialization. The present study characterized the fluvial facies of the Upper Famennian sedimentary rocks of Strud and the surrounding areas. The exceptional preservation of arthropods and plants in the main fossiliferous layers is explained by rapid burial in the fine-grained sediment of the quiet and confined flood plain environment. Newly investigated fossiliferous sections in the Meuse–Samson area led to the description and correlation of key sections (Strud, Wierde and Jausse sections, complemented by the less continuous Haltinne, Huy and Coutisse sections). Moreover, the investigated sections allowed a review of the age of the fossiliferous horizon, which is now definitely considered to be Late Famennian in age.
Located in
Library
/
RBINS Staff Publications 2016
This study aims to quantify the intensity and diversity of plant-insect associations observed in the fossil assemblage of Gelinden, Limburg, Belgium. The site yields a rich collection of well-preserved plant remains, mainly leaves, from a Paleocene European temperate forest. The 780 specimens presented here were scanned using standardized morphotype systems for any trace of damage. This raw data was then used to quantify the intensity and diversity of interactions in the Gelinden flora. This material showed an impressive richness of interactions, contrasting with the poor North American sites covering the period that followed the Cretaceous-Paleogene extinction. Both hosts and interaction types observed at Gelinden are two to three times more abundant than in most American floras, in raw numbers and leaf area affected. This is coherent with what has been observed in the few other studies conducted in Europe, South America and Antarctica, pointing toward more regionalized effects of the extinction than previously assumed based on American findings. This greater richness implies that these sites were either less affected or quicker to recover from the Cretaceous/Paleogene extinction, questioning its global impact, at least on the lower levels of the food web, as discussed in the following paper.
Located in
Library
/
RBINS Staff Publications 2023