-
First crocodyliform fossils from the Eocene of Indonesia
-
The Paleogene crocodyliform record is rich in taxonomic diversity, preserving crown and stemeusuchians alongside late-surviving neosuchians and notosuchians. This richness is mainly known from the extratropical latitudes of the New World and Eurasia, contrasting a poorly sampled tropical record. Within the tropics, the Paleogene of low-latitude southeast Asia is comparatively undersampled, with the Eocene Krabi Formation of Thailand representing the southernmost fauna. This crocodyliform fauna is composed of orientalosuchins and gavialoids, consistent with more northern records from southern Asia. Here we describe the first crocodyliform fossils from the Eocene of Indonesia, collected from the middle-late Eocene Talawi Member of the Sawahlunto Formation, west Sumatra. The Talawi Member represents a coastal swamp environment, preserving invertebrates, fish, and turtles along with rare frog, snake, and mammal fossils. Recovered crocodyliform fossils are often isolated and disarticulated, consisting of cranial remains including a partial braincase and jaw fragments, as well as relatively abundant teeth and osteoderms, vertebrae, and at least two autopodial elements. Procoelous vertebrae indicate eusuchian affinities. Osteoderms are diverse, with keeled and keelless squared and subrectangular forms. High and low-crowned fluted tooth morphotypes compare favorably to coeval gavialoids and orientalosuchins. A ziphodont form is present, potentially a planocraniid or sebecosuchian. External morphology of the braincase, such as narrow basioccipital tubera, a basioccipital plate bearing a crest, and a large basisphenoid exposure suggest a non-gavialoid identity. This is supported by preliminary observations of highresolution microCT scans, which imply a lateral carotid foramen ventral to the metotic foramen and laterally aligned medial and lateral eustachian foramina. The Sawahlunto fauna extends the southernmost geographical range of the Eocene southeast Asian crocodyliform fauna and represents the first multitaxon crocodyliform fauna from equatorial Asia. The ziphodont teeth either represent the last-occurring Asian planocraniids in a tropical refugium, or an incursion of Gondwanan sebecosuchians from India into the Asian tropics.
Located in
Library
/
RBINS Staff Publications 2025 OA
-
Depositional framework of the Sangkarewang and Sawahlunto Formations, Ombilin Basin, West Sumatra, Indonesia
-
Analyses of rock samples collected during recent fieldwork in the Ombilin Basin of west-central Sumatra, Indonesia yielded pollen data that constrain the age and depositional setting of associated plant macrofossil and vertebrate fossil-bearing units in the Sangkarewang and Sawahlunto formations. Articulated fish and plant fossils were recovered from bedding plane surfaces of fissile, laminated shales in the Sangkarewang Formation that are interpreted to have been deposited in an actively-subsiding, deep, anoxic lake. The overlying Talawi Member of the Sawahlunto Formation records stratigraphy consistent with deposition in a segue to marginal lacustrine marsh and poorly-drained paleosol settings. Interbedded carbonate mudstone / wackestone and lignitic claystone units in the basal Talawi Member preserve scattered, disarticulated fossils of fish, reptiles, an amphibian, and one mammal tooth. These beds grade into a heterolithic succession of fine-grained clastic rock, with coal interbeds likely deposited in a coastal alluvial setting. Marine influences in this interval are indicated by the nature of physical sedimentary structures in several zones, the presence of trace fossils such as Diplocraterion, Cylindrichnus and Teichichnus, and the occurrence of foraminiferal linings, dinocysts and other palynomorphs indicative of mangrove and back-mangrove settings. Palynological analysis indicates that the most probable age of the Sawahlunto Formation ranges from the middle to late Eocene, with a possible extension from the middle Eocene to the early Oligocene.
Located in
Library
/
RBINS Staff Publications 2025 OA
-
Stratigraphy, paleontology, and depositional setting of the Late Eocene (Priabonian) lower Pagat Member, Tanjung Formation, in the Asem Asem Basin, South Kalimantan, Indonesia
-
Marine sedimentary rocks of the late Eocene Pagat Member of the Tanjung Formation in the Asem Asem Basin near Satui, Kalimantan, provide an important geological archive for understanding the paleontological evolution of southern Kalimantan (Indonesian Borneo) in the interval leading up the development of the Central Indo-Pacific marine biodiversity hotspot. In this paper, we describe amoderately diverse assemblage of marine invertebrates within a sedimentological and stratigraphical context. In the studied section, the Pagat Member of the Tanjung Formation records an interval of overall marine transgression and chronicles a transition from the marginal marine and continental siliciclastic succession in the underlying Tambak Member to the carbonate platform succession in the overlying Berai Formation. The lower part of the Pagat Member contains heterolithic interbedded siliciclastic sandstone and glauconitic shale, with thin bioclastic floatstone and bioclastic rudstone beds. This segues into a calcareous shale succession with common foraminiferal packstone/rudstone lenses interpreted as low-relief biostromes. A diverse trace fossil assemblage occurs primarily in a muddy/glauconitic sandstone, sandy mudstone, and bioclastic packstone/rudstone succession, constraining the depositional setting to a mid-ramp/mid to distal continental shelf setting below fair-weather wave base but above stormwave base. Each biostrome rests upon a storm-generated ravinement surface characterized by a low-diversity Glossifungites or Trypanites trace fossil assemblage. The erosional surfaces were colonized by organisms that preferred stable substrates, including larger benthic foraminifera, solitary corals, oysters, and serpulid annelid worms. The biostromes comprised islands of highmarine biodiversity on the mud-dominated Pagat coastline. Together, the biostromes analyzed in this study contained 13 genera of symbiont-bearing larger benthic foraminifera, ∼40 mollusk taxa, at least 5 brachyuran decapod genera, and 6 coral genera (Anthemiphyllia, Balanophyllia, Caryophyllia, Cycloseris, Trachyphyllia, and Trochocyathus), as well as a variety of bryozoans, serpulids, echinoids, and asterozoans. High foraminiferal and molluscan diversity, coupled with modest coral diversity, supports the hypothesis that the origin of the diverse tropical invertebrate faunas that characterize the modern Indo-Australian region may have occurred in the latest Eocene/earliest Oligocene.
Located in
Library
/
RBINS Staff Publications 2025 OA
-
Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea)
-
Suspended particulate matter (SPM) concentration and particle size distribution (PSD) were assessed in a coastal turbidity maximum area (southern North Sea) during a composite period of 37 days in January–April 2008. PSDs were measured with a LISST 100X and classified using entropy analysis in terms of subtidal alongshore flow. The PSDs during tide-dominated conditions showed distinct multimodal behaviour due to flocculation, revealing that the building blocks of flocs consist of primary particles (<3 μm) and flocculi (15 μm). Flocculi comprise clusters of clay minerals, whereas primary particles have various compositions (calcite, clays). The PSDs during storms with a NE-directed alongshore subtidal current (NE storms) are typically unimodal and characterised by mainly granular material (silt, sand) resuspended from the seabed. During storms with a SW-directed alongshore subtidal current (SW storms), by contrast, mainly flocculated material can be identified in the PSDs. The findings emphasise the importance of wind-induced advection, alongshore subtidal flow and highly concentrated mud suspensions (HCMSs) as regulating mechanisms of SPM concentration, as well as other SPM characteristics (cohesiveness or composition of mixed sediment particles) and size distribution in a high-turbidity area. The direction of subtidal alongshore flow during SW storm events results in an increase in cohesive SPM concentration, HCMS formation, and the armouring of sand; by contrast, there is a decrease in cohesive SPM concentration, no HCMS formation, and an increase in sand and silt in suspension during NE storms.
Located in
Library
/
RBINS Staff Publications 2017
-
Multimodality of a particle size distribution of cohesive suspended particulate matters in a coastal zone
-
Particle size distributions (PSDs) of suspended particulate matters in a coastal zone are lognormal and multimodal in general. The multimodal PSD, which is caused by the mixing of multiple particle and aggregate size groups under flocculation and erosion/resuspension, is a record of the particle and aggregate dynamics in a coastal zone. Curve-fitting software was used to decompose the multimodal PSD into subordinate lognormal PSDs of primary particles, flocculi, microflocs, and macroflocs. The curve-fitting analysis for a time series of multimodal PSDs in the Belgian coastal zone showed the dependency of the multimodality on (1) shear-dependent flocculation in a flood and ebb tide, (2) breakage-resistant flocculation in the spring season, and (3) silt-sized particle erosion and advection in a storm surge. Also, for modeling and simulation purposes, the curve-fitting analysis and the settling flux estimation for the multimodal PSDs showed the possibility of using discrete groups of primary particles, flocculi, microflocs, and macroflocs as an approximation of a continuous multimodal PSD.
Located in
Library
/
RBINS Staff Publications
-
Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides
-
Divalent cations have been reported to develop bridges between anionic polyelectrolytes and negatively-charged colloidal particles, thereby enhancing particle flocculation. However, results from this study of kaolinite suspensions dosed with various anionic polyacrylamides (PAMs) reveal that Ca2+ and Mg2+ can lead to colloid stabilization under some conditions. To explain the opposite but coexisting processes of flocculation and stabilization with divalent cations, a conceptual flocculation model with (1) particle-binding divalent cationic bridges between PAM molecules and kaolinite particles and (2) polymer-binding divalent cationic bridges between PAM molecules is proposed. The particle-binding bridges enhanced flocculation and aggregated kaolinite particles in large, easily-settleable flocs whereas the polymer-binding bridges increased steric stabilization by developing polymer layers covering the kaolinite surface. Both the particle-binding and polymer-binding divalent cationic bridges coexist in anionic PAM- and kaolinite-containing suspensions and thus induce the counteracting processes of particle flocculation and stabilization. Therefore, anionic polyelectrolytes in divalent cation-enriched aqueous solutions can sometimes lead to the stabilization of colloidal particles due to the polymer-binding divalent cationic bridges.
Located in
Library
/
RBINS Staff Publications
-
Des champs et des bêtes à Bruxelles (Xe -XVe siècles). Approche interdisciplinaire des pratiques agricoles et alimentaires
-
Located in
Library
/
RBINS Staff Publications 2017
-
The upper Eocene-Oligocene carnivorous mammals from the Quercy Phosphorites (France) housed in Belgian collections
-
The Quercy Phosphorites Formation in France is world famous for its Eocene to Miocene faunas, especially those from the upper Eocene to lower Oligocene, the richest of all. The latter particularly helped to understand the ‘Grande Coupure’, a dramatic faunal turnover event that occurred in Europe during the Eocene-Oligocene transition. Fossils from the Quercy Phosphorites were excavated from the middle 19th century until the early 20th century in a series of sites and became subsequently dispersed over several research institutions, while often losing the temporal and geographical information in the process. In this contribution, we provide an overview and reassess the taxonomy of these barely known collections housed in three Belgian institutions: the Université de Liège, KU Leuven, and the Royal Belgian Institute of Natural Sciences. We focus our efforts on the carnivorous mammals (Hyaenodonta and Carnivoramorpha) and assess the stratigraphic intervals covered by each collection. These fossils are derived from upper Eocene (Priabonian), lower Oligocene (Rupelian), and upper Oligocene (Chattian) deposits in the Quercy area. The richness of the three collections (e.g., the presence of numerous postcranial elements in the Liège collection), the presence of types and figured specimens in the Leuven collection, and some identified localities in the RBINS collection make these collections of great interest for further studies on systematics and the evolution of mammals around the ‘Grande Coupure’.
Located in
Library
/
RBINS Staff Publications 2021
-
Review of Muricanthus Swainson, 1840 and some Recent species assigned to Hexaplex s.s. Perry, 1810, Hexaplex (Trunculariopsis) Cossmann, 1921 and Phyllonotus Swainson, 1833
-
Located in
Library
/
RBINS Staff Publications 2021
-
Catypnes marazziorum sp. nov. (Coleoptera: Cerambycidae: Prioninae) from Papua New Guinea
-
Located in
Library
/
RBINS Staff Publications 2021