Skip to content. | Skip to navigation

Personal tools

You are here: Home
4530 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference DNA barcoding and evolutionary relationships in Accipiter Brisson, 1760 (Aves, Falconiformes: Accipitridae) with a focus on African and Eurasian representatives
Located in Library / RBINS Staff Publications
Article Reference DNA barcoding and male genital morphology reveal five new cryptic species in the West palearctic bee Seladonia smaragdula (Vachal, 1895) (Hypmenoptera: Apoidea: Halictidae)
Located in Library / RBINS Staff Publications
Article Reference DNA barcoding and the differentiation between North American and West European Phormia regina (Diptera, Calliphoridae, Chrysomyinae)
Located in Library / RBINS Staff Publications
Article Reference DNA barcoding echinoderms from the East Coast of South Africa. The challenge to maintain DNA data connected with taxonomy
Echinoderms are marine water invertebrates that are represented by more than 7000 extant species, grouped in five classes and showing diverse morphologies (starfish, sea lilies, feather stars, sea urchins, sea cucumbers, brittle and basket stars). In an effort to further study their diversity, DNA barcodes (DNA fragments of the 5’ end of the cytochrome c oxidase subunit I gene, COI) have been used to complement morphological examination in identifying evolutionary lineages. Although divergent clusters of COI sequences were reported to generally match morphological species delineations, they also revealed some discrepancies, suggesting overlooked species, ecophenotypic variation or multiple COI lineages within one species. Here, we sequenced COI fragments of 312 shallow-water echinoderms of the East Coast of South Africa (KwaZulu-Natal Province) and compared morphological identifications with species delimitations obtained with four methods that are exclusively based on COI sequences. We identified a total of 103 morphospecies including 18 that did not exactly match described species. We also report 46 COI sequences that showed large divergences (>5% p-distances) with those available to date and publish the first COI sequences for 30 species. Our analyses also identified discordances between morphological identifications and COI-based species delimitations for a considerable proportion of the morphospecies studied here (49/103). For most of them, further investigation is necessary to keep a sound connection between taxonomy and the growing importance of DNA-based research.
Located in Library / RBINS Staff Publications 2022
Inproceedings Reference DNA barcoding echinoderms of the East Coast of South Africa
Located in Library / RBINS Staff Publications 2017
Article Reference DNA barcoding fishes from the Congo and the Lower Guinean provinces: Assembling a reference library for poorly inventoried fauna
Abstract The Congolese and Lower Guinean ichthyological provinces are understudied hotspots of the global fish diversity. Here, we barcoded 741 specimens from the Lower and Middle Congo River and from three major drainage basins of the Lower Guinean ichthyological province, Kouilou-Niari, Nyanga and Ogowe. We identified 194 morphospecies belonging to 82 genera and 25 families. Most morphospecies (92.8%) corresponded to distinct clusters of DNA barcodes. Of the four morphospecies present in both neighbouring ichthyological provinces, only one showed DNA barcode divergence <2.5%. A small fraction of the fishes barcoded here (12.9% of the morphospecies and 16.1% of the barcode clusters representing putative species) were also barcoded in a previous large-scale DNA analysis of freshwater fishes of the Lower Congo published in 2011 (191 specimens, 102 morphospecies). We compared species assignments before and after taxonomic updates and across studies performed by independent research teams and observed that most cases of inconsistent species assignments were due to unknown diversity (undescribed species and unknown intraspecific variation). Our results report more than 17 putative new species and show that DNA barcode data provide a measure of genetic variability that facilitates the inventory of underexplored ichthyofaunae. However, taxonomic scrutiny, associated with revisions and new species descriptions, is indispensable to delimit species and build a coherent reference library.
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference DNA barcoding halictine bee species from Europe and Africa
Located in Library / RBINS Staff Publications 2017
Article Reference DNA barcoding Madagascar’s amphibian fauna
Located in Library / RBINS Staff Publications
Inproceedings Reference DNA barcoding of ants from the Galapagos Archipelago: searching endemic and introduced species
Located in Library / RBINS Staff Publications 2017
Article Reference DNA barcoding of earthworms (Eisenia fetida/andrei complex) from 28 ecotoxicological test laboratories
Located in Library / RBINS Staff Publications 2016