Skip to content. | Skip to navigation

Personal tools

You are here: Home
1068 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference Tracking the human influence on the modern sedimentary system of the North Sea
Located in Library / RBINS Staff Publications 2023
Article Reference Tracking the origin of worked elephant ivory of a medieval chess piece from Belgium through analysis of ancient DNA
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Tremadocian and Floian (Ordovician) linguliformean brachiopods from the Stavelot–Venn Massif (Avalonia; Belgium and Germany)
Located in Library / RBINS Staff Publications 2022
Inbook Reference Trictenotomidae. Catalogue of species
Located in Library / RBINS Staff Publications 2020
Techreport Reference Turbine size impacts the number of seabird collisions per installed megawatt and offers possibilities for mitigation.
As the offshore wind energy technology is rapidly progressing and because wind turbines at sea have a relatively short life span, repowering scenarios are already being discussed for the oldest wind farms. Ongoing developments result in larger wind turbines and an increased open airspace between turbines. Despite taller towers having larger rotor swept zones and therefore a higher collision risk area compared to smaller-sized turbines, there is increasing evidence that fewer but larger, more power-efficient turbines may have a lower collision rate per installed megawatt. As such, turbine size can offer an opportunity to mitigate seabird fatalities by increasing the clearance below the lower rotor tip. We assessed the seabird collision risk for a hypothetical repowering scenario of the first offshore wind farm zone in Belgian waters with larger turbines and the effect of an additional increase in hub height on that theoretical collision risk. For all species included in this exercise, the estimated collision risk decreased in a repowering scenario with 15 MW turbines (40.4% reduction on average) because of higher clearance between the lower tip of the turbine rotor and the sea level, and the need for a lower number of turbines per km². Increasing the hub height of those 15 MW turbines with 10 m, further decreases the expected number of seabird collisions with another 37% on average. However, terrestrial birds and bats also migrate at sea and the effect of larger turbines on these taxa is less clear. Possibly even more terrestrial birds and bats are at risk of collision compared to the current turbines. So, while larger turbines and increasing the hub height can be beneficial for seabirds, this likely needs to be applied in combination with curtailment strategies, which stop the turbines during heavy migration events, to reduce the impact on other species groups.
Located in Library / RBINS Staff Publications 2022
Article Reference Twenty years for Zootaxa and ten years for Afromoths (Lepidoptera): a taxonomic interaction between the journal and an online relational database
Located in Library / RBINS Staff Publications 2021
Inbook Reference Two decennia of faunal analysis at Sagalassos
Located in Library / RBINS Staff Publications
Article Reference Two fatal autochthonous cases of airport malaria, Belgium, 2020
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Two new Drapetis species (Diptera: Hybotidae) from Sweden
Located in Library / RBINS Staff Publications 2020
Article Reference Two new millipede species of the genus Coxobolellus Pimvichai, Enghoff, Panha & Backeljau, 2020 (Diplopoda, Spirobolida, Pseudospirobolellidae)
Located in Library / RBINS Staff Publications 2022 OA