Skip to content. | Skip to navigation

Personal tools

You are here: Home
1775 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Volkovitshilus sg.n. and Bilyilus sg.n., two new subgenera of Indo-Pacific Agrilus curt. (Coleoptera: Buprestidae)
Located in Library / RBINS collections by external author(s)
Inbook Reference Dredging and dumping
Located in Library / RBINS Staff Publications 2018
Inbook Reference Zand- en grindwinning
Located in Library / RBINS Staff Publications 2018
Inbook Reference Sand and gravel extraction
Located in Library / RBINS Staff Publications 2018
Article Reference Eponyms as scientific recognition to Queen Astrid and King Leopold III of Belgium
Located in Library / RBINS Staff Publications 2021
Article Reference Type material of South-American land snails (Mollusca: Gastropoda) of Wladyslaw Emanuel Lubomirski collection deposited in the Museum and Institute of zoology, Warsaw, Poland
Located in Library / RBINS Staff Publications 2022
Article Reference Ancient RNA from Late Pleistocene permafrost and historical canids shows tissue-specific transcriptome survival
While sequencing ancient DNA (aDNA) from archaeological material is now commonplace, very few attempts to sequence ancient transcriptomes have been made, even from typically stable deposition environments such as permafrost. This is presumably due to assumptions that RNA completely degrades relatively quickly, particularly when dealing with autolytic, nuclease-rich mammalian tissues. However, given the recent successes in sequencing ancient RNA (aRNA) from various sources including plants and animals, we suspect that these assumptions may be incorrect or exaggerated. To challenge the underlying dogma, we generated shotgun RNA data from sources that might normally be dismissed for such study. Here, we present aRNA data generated from two historical wolf skins, and permafrost-preserved liver tissue of a 14,300-year-old Pleistocene canid. Not only is the latter the oldest RNA ever to be sequenced, but it also shows evidence of biologically relevant tissue specificity and close similarity to equivalent data derived from modern-day control tissue. Other hallmarks of RNA sequencing (RNA-seq) data such as exon-exon junction presence and high endogenous ribosomal RNA (rRNA) content confirms our data’s authenticity. By performing independent technical library replicates using two high-throughput sequencing platforms, we show not only that aRNA can survive for extended periods in mammalian tissues but also that it has potential for tissue identification. aRNA also has possible further potential, such as identifying in vivo genome activity and adaptation, when sequenced using this technology.
Located in Library / RBINS Staff Publications 2019
Article Reference Intermediate gastropod hosts of major feline cardiopulmonary nematodes in an area of wildcat and domestic cat sympatry in Greece
Located in Library / RBINS Staff Publications 2020
Inproceedings Reference Leveraging ecosystem restoration for zoonotic spillover risk mitigation
As disease regulation is a key ecosystem service, it is crucial that we better understand the role that restoring landscapes can play in reducing disease risks. Ongoing One Health studies suggest that declining biodiversity and increasing zoonotic pathogen spill-over risk are linked. Restoration processes normally aim at increasing species diversity, wherefore it is assumed that pathogens will be diluted in restored ecosystems, hence reducing the risk of zoonotic spillover. Nonetheless, the developing species composition during restorative processes will impact dilution-amplification effects. To estimate the threshold beyond which a restored ecosystem can be considered to have reached the pathogen dilution phase, it is crucial to characterise the communities of hosts, and the prevalence of pathogens, at the different stages of recovery of an ecosystem. Using interdisciplinary methods, this project has the dual aim of examining the amplification-dilution of zoonotic pathogens in a mangrove forest of the western Peninsular Malaysia, and to estimate the frequency and duration of exposure of local communities to this hazard, so as to best mitigate the risk of zoonotic pathogen spillover.
Located in Library / RBINS Staff Publications 2025
Inproceedings Reference Metagenomic screening of African wild meat unveils a wide diversity of viruses
The processes involved in acquiring, trading, preparing, and consuming wild meat pose significant risks for the emergence of zoonotic infectious diseases. Several major viral outbreaks have been directly linked to the wild meat supply chain, yet our knowledge of the virome in many mammals involved in this chain remains limited and disproportionately focused on certain mammalian taxa and pathogens. This report presents the findings of a metagenomic viral screening of 99 specimens belonging to 27 wild African mammal species and one domesticated species, all traded for their meat. The study focuses on tissue and swab samples collected from various regions in the Democratic Republic of the Congo and in Brussels, Belgium. A total of fifteen virus strains were detected, belonging to the families Arteriviridae, Retroviridae and Sedoreoviridae (primates), Picobirnaviridae (primates and rodents), Picornaviridae (rodents), Hepadnaviridae (hyrax), Orthoherpesviridae (artiodactylid and carnivore) and Spinareoviridae (carnivore). Several strains were detected in mammalian hosts for the first time, expanding their host range and genetic diversity. Of note is the presence of viruses genetically related to recognised zoonotic pathogens, i.e., human picobirnavirus (Orthopicobirnavirus hominis) (primates and rodents), simian foamy viruses (Simiispumavirus) (primates), and rotavirus A (Rotavirus alphagastroenteritidis) (primates). The presence of these viruses in primates is concerning as non-human primates are phylogenetically closely related to humans, which can facilitate interspecies viral transmission. These findings underscore the high diversity of mammalian viruses and the potential risk of human infection through cross-species transmission during the close interactions with wildlife in the wild meat supply chain.
Located in Library / RBINS Staff Publications 2025