Skip to content. | Skip to navigation

Personal tools

You are here: Home
1837 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system
Located in Library / RBINS Staff Publications 2021
Article Reference Using the automated HYPERNETS hyperspectral system for multimission satellite ocean colour validation in the Río de la Plata, accounting for different spatial resolutions
Located in Library / RBINS Staff Publications 2024
Article Reference Utility of GenBank and the Barcode of Life Data Systems (BOLD) for the identification of forensically important Diptera from Belgium and France
Located in Library / RBINS Staff Publications
Article Reference Utilization of Cloud Computing for Water Quality Monitoring in the Northern Waters of Aceh
Managing marine geographic information systems is crucial, especially with climate change and the rise of spatial big data. Cloud-based geospatial systems are essential for stakeholders needing quick decision-making in marine conservation. This study examines the capabilities of Google Earth Engine (GEE) in analyzing sea surface quality in the northern waters of Aceh (NWA). The results show GEE can access remote sensing datasets and reanalysis models to map temperature, salinity, and chlorophyll-a. Annual trends reveal lower salinity near the Malacca Strait and higher levels in the Indian Ocean and Andaman Sea. GEE supports proactive coastal ecosystem management, emphasizing the role of geospatial technology in marine conservation and civil engineering for climate-resilient coastal development.
Located in Library / RBINS Staff Publications 2024
Article Reference Validating a biophysical dispersal model with the early life-history traits of common sole (Solea solea L.)
Larval dispersal and juvenile survival are crucial in determining variation in recruitment, stock size and adult distribution of commercially important fish. This study investigates the dispersal of early-life stages of common sole (Solea solea L.) in the southern North Sea, both empirically and through modeling. Age at different life-history events of juvenile flatfish sampled along the coasts of Belgium, the Netherlands and the United Kingdom in 2013, 2014 and 2016, was determined through the counting of daily growth rings in the otoliths. Juveniles captured between August and October were estimated to be on average 140 days old with an average pelagic larval duration of 34 days. The hatching period was esti- mated between early April and mid-May followed by arrival and settlement in the nurseries between May and mid-June. Growth rates were higher off the Belgian coast than in the other nursery areas, especially in 2013, possibly due to a post-settlement differentiation. Empirical pelagic larval duration and settlement distributions were compared with the L AR- VAE &C O larval dispersal model, which combines local hydrodynamics in the North Sea with sole larval behavior. Yearly predicted and observed settlement matched partially, but the model estimated a longer pelagic phase. The observations fitted even better with the mod- elled average (1995–2015) distribution curves. Aberrant results for the small juvenile sole sampled along the UK coast in March 2016, led to the hypothesis of a winter disruption in the deposition of daily growth rings, potentially related to starvation and lower food availabil- ity. The similarities between measured and modelled distribution curves cross-validated both types of estimations and accredited daily ageing of juveniles as a useful method to cali- brate biophysical models and to understand early-life history of fish, both important tools in support of efficient fisheries management strategies.
Located in Library / RBINS Staff Publications 2021
Article Reference Validating a biophysical dispersal model with the early life-history traits of common sole (Solea solea L.)
Larval dispersal and juvenile survival are crucial in determining variation in recruitment, stock size and adult distribution of commercially important fish. This study investigates the dispersal of early-life stages of common sole (Solea solea L.) in the southern North Sea, both empirically and through modeling. Age at different life-history events of juvenile flatfish sampled along the coasts of Belgium, the Netherlands and the United Kingdom in 2013, 2014 and 2016, was determined through the counting of daily growth rings in the otoliths. Juveniles captured between August and October were estimated to be on average 140 days old with an average pelagic larval duration of 34 days. The hatching period was estimated between early April and mid-May followed by arrival and settlement in the nurseries between May and mid-June. Growth rates were higher off the Belgian coast than in the other nursery areas, especially in 2013, possibly due to a post-settlement differentiation. Empirical pelagic larval duration and settlement distributions were compared with the LARVAE&CO larval dispersal model, which combines local hydrodynamics in the North Sea with sole larval behavior. Yearly predicted and observed settlement matched partially, but the model estimated a longer pelagic phase. The observations fitted even better with the modelled average (1995–2015) distribution curves. Aberrant results for the small juvenile sole sampled along the UK coast in March 2016, led to the hypothesis of a winter disruption in the deposition of daily growth rings, potentially related to starvation and lower food availability. The similarities between measured and modelled distribution curves cross-validated both types of estimations and accredited daily ageing of juveniles as a useful method to calibrate biophysical models and to understand early-life history of fish, both important tools in support of efficient fisheries management strategies.
Located in Library / RBINS Staff Publications 2020
Article Reference Valuation of ecosystem services in marine protected areas: A comprehensive review of methods and needed developments
Effectively managing Marine Protected Areas (MPAs) requires recognising and understanding the fundamental services offered by marine ecosystems and the socio-economic consequences that their changes will have. A systematic literature review was performed to generate a first in-detail screening and assessment of monetary and non-monetary methods for the valuation of ecosystem services (ES) and their application in MPAs and MPA networks. A total of 100 peer-reviewed papers on ES valuation within MPAs and MPA networks were identified and analysed. Valuation methods can be classified into nine monetary and seven non-monetary methodologies. There is a predominant use of monetary valuation methodologies, especially stated preference methods. However, combining monetary with non-monetary valuation approaches can provide deeper insights into the underlying reasons for assigning values to ES and offer enhanced opportunities to capture the value of services that may be challenging to express solely in monetary terms. Besides, the review underscores the gaps in assessment methodologies, particularly in addressing supporting and regulating ES, as well as non-use and option values related to MPAs, underscoring the need for innovative approaches to overcome challenges in capturing these essential components of marine ecosystems.
Located in Library / RBINS Staff Publications 2024
Article Reference Variability of pterygoid teeth in three species of Podarcis lizards and the utility of palatal dentition in lizard systematics
Located in Associated publications / Belgian Journal of Zoology / Bibliographic References
Article Reference Variability of the inherent and apparent optical properties in a highly turbid coastal area: impact for the calibration of remote sensing algorithms
Located in Library / RBINS Staff Publications
Article Reference Variation in ecosystem services within biogenic reefs: The role of reef-building species under distinct hydrodynamic conditions
To enhance the climate resilience of coastlines, measures are being implemented to protect and restore coastal ecosystems, such as biogenic reefs and dunes. These measures, known as Nature-based Solutions (NbS), provide protection against storms, coastal erosion, and flooding. They are also recognised for increasing biodiversity and delivering a range of ecosystem services (ES). This study investigated the ES provided by biogenic reefs composed of two reef-building species (Mytilus edulis and Lanice conchilega) under distinct hydrodynamic conditions. Three ES were assessed at two sites in the Belgian part of the North Sea: (1) coastal protection, (2) carbon sequestration, and (3) water quality regulation. The two sites have different hydrodynamic conditions due to their relative locations in relation to local sandbanks, making one site more exposed and the other more sheltered. The ES were quantified and monetised using in-situ measurements and literature data based on the SUstainable Marine Ecosystem Services (SUMES) model. The results suggest that the provision of ES in biogenic reefs is determined by multiple factors, including environmental conditions (e.g. hydrodynamics) and reefbuilding species. (1) Sediment accumulation was only observed under low hydrodynamic conditions, due to the higher settlement success of M. edulis and the presence of L. conchilega. (2) M. edulis “produces” carbon under both low and high hydrodynamic conditions, due to high respiration and biocalcification rates. However, low hydrodynamic conditions are more conducive to carbon burial, thus enhancing carbon sequestration. (3) M. edulis patches exhibited higher denitrification rates under low hydrodynamic conditions than under high hydrodynamic conditions or in L. conchilega patches, due to divergent macrobenthic functional diversity. In conclusion, the level of ES provision is determined by location and associated environmental conditions, as well as temporal and spatial variation in biogenic reefs and the physiological characteristics of reef builders. Therefore, both aspects need to be carefully considered when planning coastal protection measures and determining the provision of ES. Finally, when implementing NbS along high-energy coastlines, sheltered sites should be prioritised.
Located in Library / RBINS Staff Publications 2025