Skip to content. | Skip to navigation

Personal tools

You are here: Home
1712 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Sawflies (Hymenoptera: Argidae, Pergidae, Tenthredidinidae) from southern Ecuador, with a new record for the country and some ecological data.
Located in Library / RBINS Staff Publications 2016
Article Reference Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic
The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.
Located in Library / RBINS Staff Publications 2016
Article Reference Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary
Located in Library / RBINS Staff Publications 2016
Article Reference Spider Stowaways: molecular Data Support the Synonymization of Selenops galapagoensis with Selenops mexicanus (Araneae: Selenopidae) and Indicate Human-Mediated Introduction to the Galapagos Islands
Located in Library / RBINS Staff Publications 2016
Article Reference A revision of the Thyropygus allevatus group. Part V: Nine new species of the extended opinatus subgroup, based on morphological and DNA sequence data (Diplopoda: Spirostreptida: Harpagophoridae)
Located in Library / RBINS Staff Publications 2016
Article Reference Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis
Located in Library / RBINS Staff Publications 2016
Article Reference Field Method for testing Repellency of an Icaridin-Containing Skin Lotion against Vespid Wasps
Located in Library / RBINS Staff Publications 2016
Article Reference Mitogenomics reveals high synteny and long evolutionary histories of sympatric cryptic nematode species
Species with seemingly identical morphology but with distinct genetic differences are abundant in the marine environment and frequently co-occur in the same habitat. Such cryptic species are typically delineated using a limited number of mitochondrial and/or nuclear marker genes, which do not yield information on gene order and gene content of the genomes under consideration. We used next-generation sequencing to study the composition of the mitochondrial genomes of four sympatrically distributed cryptic species of the Litoditis marina species complex (PmI, PmII, PmIII, and PmIV). The ecology, biology, and natural occurrence of these four species are well known, but the evolutionary processes behind this cryptic speciation remain largely unknown. The gene order of the mitochondrial genomes of the four species was conserved, but differences in genome length, gene length, and codon usage were observed. The atp8 gene was lacking in all four species. Phylogenetic analyses confirm that PmI and PmIV are sister species and that PmIII diverged earliest. The most recent common ancestor of the four cryptic species was estimated to have diverged 16 MYA. Synonymous mutations outnumbered nonsynonymous changes in all protein-encoding genes, with the Complex IV genes (coxI-III) experiencing the strongest purifying selection. Our mitogenomic results show that morphologically similar species can have long evolutionary histories and that PmIII has several differences in genetic makeup compared to the three other species, which may explain why it is better adapted to higher temperatures than the other species.
Located in Library / RBINS Staff Publications 2016
Article Reference Spatiotemporal variation and sediment retention effects on nematode communities associated with Halimeda opuntia (Linnaeus) Lamouroux (1816) and Sargassum polyceratium Montagne (1837) seaweeds in a tropical phytal ecosystem
Nematodes play an important role in ecological processes and are one of the most abundant meiofaunal organisms associated with seaweeds. Yet, knowledge on seaweed bed ecosystems is limited. Nematodes associated with Sargassum polyceratium and Halimeda opuntia were compared in two transects, 80 m apart and parallel to the beach line in Cupe Beach, Brazil. The temporal variation during the dry and rainy seasons and the effect of sediment retention by the seaweed on nematode density and composition were investigated. The differences in nematode communities between the two seasons were mainly caused by the increase in density of the most abundant genera in the rainy season. A significant difference was observed between the nematode communities of the two transects for H. opuntia. The nematode communities of both seaweed species did not differ significantly in the same transect. The genus Euchromadora was dominant in both seaweed species. The amount of sediment retained by the seaweeds did not affect the overall nematode density. However, it was positively correlated with the density of Draconema and Euchromadora in both seaweeds, and both genera were exclusively found associated with seaweeds. This result opposes the idea that the more sediment retained by the seaweed, the higher the nematode overall density and the higher the number of nematodes originally coming from the sediment.
Located in Library / RBINS Staff Publications 2016
Article Reference Charred olive stones: experimental and archaeological evidence for recognizing olive processing residues used as fuel
After extracting oil from olives a residue is left usually referred to as the olive oil processing residue (OPR). This study explores the way in which ancient societies may have used OPR as fuel for fires to generate heat and the various issues that are related to the residues of this fuel. After drying, the high heating value and structure of OPR makes it an excellent and efficient fuel. Upgrading OPR further, through thermal conversion or charring, provides an even more efficient fuel (COPR), with a hotter and smoke free flame, a higher heating value and which is lighter in mass and thus easier to transport. After a fire is extinguished two types of remains of the fuel are left i.e. char and ash. Analyses on both remains, recovered from archaeological deposits, could be used as a source of information on fuel utilization. Laboratory experiments on charred modern OPR and stones show that by measuring their reflectance and analyzing their structure under reflected light microscopy, OPR and COPR can be distinguished in the charred material recovered from three archaeological sites in Greece and Syria. Based on these investigations it is suggested that on the three sites COPR was used as fuel. Ash, sampled together with the char, provides the possibility of investigating if other types of fuel were used, apart from OPR or COPR. On the investigated sites no ash was collected, but the analysis of the modern OPR showed that the properties of its ash could be used to distinguish it from other types of fuel. Ash from modern OPR and olive stones showed the presence of phytoliths. The often discussed issue related to the sharpness and smoothness of the edges of charred fragmented olive stones was investigated. The results showed that this is not a reliable criterion for recognizing olive oil production. It is recommended that in addition to the identification of the botanical material more properties of the remains of fuels should be analysed. To prevent destroying and losing char and ash as a result of excavation activities such as flotation and sieving, special measures have to be taken. The results show that analysing char and ash may provide valuable information on the (pyro)technology practised in ancient societies.
Located in Library / RBINS Staff Publications 2016