The New Caledonian Archipelago is a hot spot for biodiversity and endemism. Here, we report on new records of nine species from localities on the main island, Grande Terre, and illustrate these: Ilyodromus viridulus (Brady, 1886), Stenocypris hislopi Ferguson, 1969, S. macedonica Petkovski & Meisch, 1996¸ S. malayica Victor & Fernando, 1981, Bradleytriebella lineata (Victor & Fernando, 1981), Hemicypris pyxidata (Moniez, 1892), Heterocypris incongruens (Ramdohr, 1808), Cypridopis vidua (O.F. Müller, 1776) and Limnocythere stationis Vávra, 1891. We also provide redescriptions and illustrations of the valves and carapace of Stenocypris marginata Daday, 1910 sensu Méhes, 1939, Cypris granulata Daday, 1898 and Kennethia major (Méhes, 1939); for the latter species also including some soft parts. Therefore, twenty two certain species have thus far been reported from the New Caledonian Archipelago. The status of seven uncertain species is also discussed. Previous records of Stenocypris major (Baird, 1859) from Grande Terre, mainly by Méhes, are here considered to belong to S. hislopi. We propose to reject the presence of Cyprinotus cingalensis Brady, 1886 in New Caledonia and suggest to consider Cypridopsis sarasini Méhes, 1939 as an “uncertain species” (sensu Meisch et al. 2019). We also argue that Eucypris wolffhuegeli Méhes, 1914 might be a synonym of H. incongruens and suggest that Strandesia rouxi Méhes, 1939 might be considered a junior synonym of an existing species, pending further research.
Located in
Library
/
RBINS Staff Publications 2024
Anthropogenic structures in freshwater systems pose a significant threat by fragmenting habitats. Effective fish passage solutions must consider how environmental changes introduce variability into swimming performance. As temperature is considered the most important external factor influencing fish physiology, it is especially important to consider its effects on fish swimming performance. Even minor alterations in water properties, such as temperature and velocity, can profoundly affect fish metabolic demands, foraging behaviours, fitness and, consequently, swimming performance and passage success. In this study, we investigated the impact of varying water temperatures on the critical swimming speeds of four migratory New Zealand species. Our findings revealed a significant reduction in critical swimming speeds at higher water temperatures (26°C) compared to lower ones (8 and 15°C) for three out of four species (Galaxias maculatus, Galaxias brevipinnis and Gobiomorphus cotidianus). In contrast, Galaxias fasciatus exhibited no significant temperature-related changes in swimming performance, suggesting species-specific responses to temperature. The cold temperature treatment did not impact swimming performance for any of the studied species. As high water temperatures significantly reduce fish swimming performance, it is important to ensure that fish passage solutions are designed to accommodate a range of temperature changes, including spatial and temporal changes, ranging from diel to decadal fluctuations. Our research underscores the importance of incorporating temperature effects into fish passage models for habitat restoration, connectivity initiatives, and freshwater fish conservation. The influence of temperature on fish swimming performance can alter migration patterns and population dynamics, highlighting the need for adaptive conservation strategies. To ensure the resilience of freshwater ecosystems it is important to account for the impact of temperature on fish swimming performance, particularly in the context of a changing climate.
Located in
Library
/
RBINS Staff Publications 2024