Skip to content. | Skip to navigation

Personal tools

You are here: Home
3020 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference IBISCA-Panama, a large-scale study of arthropod beta-diversity and vertical stratification in a lowland rainforest: rationale, study sites and field protocols.
Located in Library / RBINS Staff Publications
Article Reference IBISCA: Towards a Census of Canopy Life.
Located in Library / RBINS Staff Publications
Misc Reference IBISCA: une étude à grande échelle de la biodiversité des arthropodes dans une forêt du Panama
Located in Library / RBINS Staff Publications
Techreport Reference ICES VIEWPOINT: Scrubber discharge water from ships – risks to the marine environment and recom-mendations to reduce impacts
New global standards on sulphur content in marine fuels have led to an increasing number of ships installing exhaust gas cleaning systems, also known as scrubbers, to reduce air emissions of sulphur oxides. Ships equipped with a scrubber can continue to use heavy fuel oil, resulting in significant discharge of acidified water containing several contaminants, such as heavy metals, persistent organic pollutants (POPs; mainly polycyclic aromatic hydrocarbons), and nitrogen compounds.The simplest and most common type of scrubber system, the open-loop scrubber, directly discharges the contaminated water in to the sea. The use of scrubber systems by ships is an emerging global problem and an additional pressure on the marine environment. The substances found in scrubber discharge water can cause acute effects on marine biota and may have further impacts, through bioaccumulation, acidification, and eutrophication, on the structure and functioning of marine ecosystems.The number of ships with installed scrubber systems is increasing, but legislation on scrubber discharge is lagging, inconsistent between countries, and often insufficient to protect the environment. ICES recommends the use of cleaner low-sulphur fuels, such as marine gas oil, to eliminate scrubber use and associated impacts on the marine environment.Until this is possible, ICES proposes a set of measures to mitigate scrubber impacts
Located in Library / RBINS Staff Publications 2020
Article Reference Ideal Free distribution of fixed dispersal phenotypes in a wing dimorphic beetle in heterogeneous landscapes
According to the ideal free distribution (IFD) theory, individuals that are able to perceive the quality of different patches in a landscape and disperse freely are expected to redistribute themselves proportionally to the carrying capacities of heterogeneous patches. Here, we argue that when dispersal is unconditional and genetically fixed, a coalition of sedentary and dispersing phenotypes can attain an IFD under spatio-temporally uncorrelated variation in fitness. This not only leads to a stable polymorphism of both dispersal phenotypes, but also implies that the number of dispersing individuals should on average be equal among patches and determined by the carrying capacity of the smallest local populations in the landscape. Differences in carrying capacity among patches are thus only reflected by changes in the number of sedentary individuals. Individual-based simulations show that this mechanism can be generalized over a wide range of spatio-temporal conditions and dispersal strategies. Moreover, these expectations are in strong agreement with empirical data on the density of both dispersal phenotypes of the wing dimorphic ground beetle Pterostichus vernalis within and among ten different landscapes. Hence, for the first time, these results demonstrate that this mechanism serves as a plausible alternative to the competition-colonization model to explain the spatial distribution of fixed dispersal phenotypes in heterogeneous landscapes. Understanding of the frequency distributions of individuals expressing discrete dispersal morphs moreover improves our predictive and management capabilities for a broad range of species, for which we currently typically rely on using mean dispersal rates.
Located in Library / RBINS Staff Publications
Article Reference Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding
Located in Library / RBINS Staff Publications
Inproceedings Reference Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding
Located in Library / RBINS Staff Publications
Article Reference Identification of disease vectors from foreign deployment sites of the Belgian armed forces using DNA-based technologies
Located in Library / RBINS Staff Publications 2019
Article Reference Identification of forensically important Sarcophaga species (Diptera: Sarcophagidae) using the mitochondrial COI gene
Located in Library / RBINS Staff Publications
Article Reference Identification of the African–European Erymnochelys group (Pleurodira, Podocnemididae) in the Belgian fossil record: first finding of Eocenochelus eremberti outside its type locality
An almost complete plastron, as well as several peripherals and a costal plate of a turtle from the middle Eocene of Saint-Gilles, is presented here. Although this turtle specimen was donated to the Institut royal des Sciences naturelles de Belgique (Brussels, Belgium) more than a century ago, it remained undescribed. Its study allows us to recognize the second pleurodiran in the Belgian fossil record, where, until now, the Eocene Neochelys was the only one known. The Belgian material of Neochelys is known in lower Eocene (early Ypresian) levels, but the new pleurodiran specimen comes from the middle Eocene (early Lutetian). It is the first partial articulate shell of a pleurodiran turtle recognized in Belgium, and the only member of this clade recognized in this country at specific level. The new specimen is a representative of the so-called Erymnochelys group, this lineage being known in Africa from the Upper Cretaceous to the present but in Europe only during the Eocene. It represents the first specimen of Eocenochelus eremberti identified outside its type locality, the French region of Saint-Germain-en-Laye (Yvelines, Île-de-France), where only one specimen was found. The plastron of the Belgian individual corresponds to the most complete for this species. Its analysis allows us not only to broaden the range of paleobiogeographical distribution of Eocenochelus eremberti but also to improve the knowledge about the anatomy and variability of this taxon.
Located in Library / RBINS Staff Publications 2017