Sub-Antarctic islands are expected to show a high degree of endemicity due to their remoteness. However, biogeographic affinities in the sub-Antarctic remain poorly understood, especially in the marine realm. Sub-Antarctic islands being at the crossroads between Antarctic and cold temperate regions, biodiversity characterization and biogeographic analyses are a priority for monitoring and rapidly assessing variations associated with environmental changes. One underexplored sub-Antarctic area is Crozet, a protected archipelago located halfway between Antarctica and South Africa. In this study, we investigated the shallow-water Crozet macrofaunal diversity, distribution patterns and biogeographic affinities based on the examination of fieldwork specimens via a thorough morphological identification and a genetic characterisation. The resulting dataset provides an important baseline for further studies and conservation strategies, compiling the first genetic and taxonomic database for the Crozet archipelago. In total, 100 morphotypes were found, belonging to nine different phyla, among whicharthropods(32), molluscs (18)and echinoderms (17) were the richest. Forty-seven morphotypes were identified to the species level, among which 20 were reported in Crozet for the first time. This confirms that Crozet is a poorly known region, even compared to other sub-Antarctic areas. A large proportion of species (62%) had circum Southern Ocean or circum sub Antarctic distributions. These species were mostly shared with Kerguelen (72%), the Magellan Province (64%), and Prince Edward Islands (64%), confirming the patterns found in macroalgae and specific macrofaunal groups. However, this large-distribution statement needs to be counterbalanced by the detection (genetic data) of more restricted distributions than expected in four study cases (the tanaid Apseudes spectabilis, the nudibranch Doris kerguelenensis, the polychaete Neanthes kerguelensis and the chiton Hemiarthrum setulosum). Considering that most morphotypes had no genetic data available from other regions, the proportion of morphotypes with restricted distribution is likely to increase alongside future investigations. In addition, we also found a few cases of unrecognized diversity that might lead to the descriptions of new species, some likely to be endemic to Crozet (e.g., within the polychaete genus Harmothoe and the bryozoan genus Antarctothoa). Altogether, this stresses the need to maintain conservation efforts in Crozet and pursue integrative investigations in order to highlight and protect its unusual diversity
Located in
Library
/
RBINS Staff Publications 2024
The coupled effects of climate change, sea-level rise, and land sinking in estuaries/alluvial plains prone to inundation and flooding mean that reliable estimation of land movements/subsidence is becoming more crucial. During the last few decades, land subsidence has been monitored by precise and continuous geodetic measurements either from space or using terrestrial techniques. Among them, the Persistent Scaterrer Interferometry (PSInSAR) technique is used on the entire Belgian territory to detect, map and interpret the identified ground movements observed since 1992. Here the research focuses on one of the biggest cities in Belgium that became the second European harbour with giant docks and the deepening of the Scheldt river allowing the navigation of the largest container vessels. The areas along the embankments of the Scheldt river and the harbour facilities are associated to Holocene fluviatile deposits overlain by recent landfills. These sedimentary deposits and human-made landfills are affected by important and ongoing land subsidence phenomena. The land subsidence process is highlighted by an annual average Line of Sight (LOS) velocity of about −3.4 mm/year during the years 1992–2001 (ERS1/2 datasets), followed by an annual average LOS velocity of about −2.71 mm/year and −2.11 mm/year, respectively, during the years 2003–2010 (ENVISAT) and 2016–2019 (Sentinel 1A). The Synthetic Aperture Radar (SAR) imagery data indicate a progressive decrease in the average annual velocities on a global scale independently of important local variations in different districts along the Scheldt river. On the contrary, the city centre and the old historic centre of Antwerp are not affected by negative LOS velocities, indicating stable ground conditions. A geological interpretation of this difference in settlement behaviour between the different areas is provided.
Located in
Library
/
RBINS Staff Publications 2021