Suspended particulate matter (SPM) is abundant and essential in marine and coastal waters, and comprises a wide variety of biomineral particles, which are practically grouped into organic biomass and inorganic sediments. Such biomass and sediments interact with each other and build large biomineral aggregates via flocculation, therefore controlling the fate and transport of SPM in marine and coastal waters. Despite its importance, flocculation mediated by biomass-sediment interactions is not fully understood. Thus, the aim of this research was to explain biologically mediated flocculation and SPM dynamics in different locations and seasons in marine and coastal waters. Field measurement campaigns followed by physical and biochemical analyses had been carried out from 2004 to 2011 in the Belgian coastal area to investigate bio-mediated flocculation and SPM dynamics. Although SPM had the same mineralogical composition, it encountered different fates in the turbidity maximum zone (TMZ) and in the offshore zone (OSZ), regarding bio-mediated flocculation. SPM in the TMZ built sediment-enriched, dense, and settleable biomineral aggregates, whereas SPM in the OSZ composed biomass-enriched, less dense, and less settleable marine snow. Biological proliferation, such as an algal bloom, was also found to facilitate SPM in building biomass-enriched marine snow, even in the TMZ. In short, bio-mediated flocculation and SPM dynamics varied spatially and seasonally, owing to biomass-sediment interactions and bio-mediated flocculation.
Located in
Library
/
RBINS Staff Publications 2017
A future bio-based economy envisions the transformation of the petrochemical industry into using biomass such as wood (waste) as a major resource. The early-stage evaluation of a biorefinery project requires the optimization of the lay-out of the supply chain considering the spatio-temporal variability of the availability of feedstock and the techno-economical characteristics of the biorefinery process. Therefore, the presented methodology was developed combining three models: (1) a forest management and planning tool providing a detailed prediction on the wood resource availability as well as the harvested feedstock quantity and cost with respect to location and time, (2) a techno-economic assessment model of the biorefinery process (e.g., species-specific conditions, capacity, CAPEX, OPEX), and (3) a strategic supply chain optimization model combining the insights of (1) and (2) into a spatio-temporal explicit supply chain analysis. The developed methodology has been evaluated through a case-study on the emerging reductive catalytic fractionation (RCF) biorefining in the Flanders region (EU) and shows that the most economically interesting configuration is one large biorefinery with a yearly wood chip intake of 150 kton. The biorefinery location reflects the available feedstock distribution in Flanders and is suggested to be situated best in the most forested region. The proposed methodology proved to be dynamic and robust: (1) input data and technical calculations can easily be adapted or updated; (2) the methodology can be applied to a broad range of applications beyond the scope of the biorefinery, to different feedstock choices; (3) the impact of the biorefinery location on e.g. energy balance, CO2 emissions, and financial balance can be assessed.
Located in
Library
/
RBINS Staff Publications 2024