Plesiadapidae are among the most successful mammal families of the Paleocene, but in North America they disappear abruptly around the Paleocene-Eocene boundary. In contrast, in Europe, they survive a few million years into the Eocene, although only as the genus Platychoerops. The latest Paleocene deposits of Petit-P^atis (Paris Basin, France) have produced three new plesiadapid species, one of each genus known in Europe: Plesiadapis ploegi, sp. nov., Platychoerops boyeri, sp. nov., and Chiromyoides mauberti, sp. nov. Each of these new species is represented by the very characteristic upper incisor, thus ascertaining their concomitant presence and in particular the spatial and temporal coexistence of Plesiadapis and Platychoerops. Plesiadapis ploegi, sp. nov., is morphologically intermediate between Plesiadapis tricuspidens and Platychoerops russelli, with a tricuspid I1 typical of Plesiadapis and a semimolariform p4 closer to Platychoerops. Its relatively high morphological variability is illustrated. Platychoerops boyeri, sp. nov., has the simple derived I1 of all Platychoerops and a p4 slightly more molariform than that of Ples. ploegi. Chiromyoides mauberti, sp. nov., is closest to Chiromyoides campanicus, but it is smaller and has a particular I1 with multiple posterocones. The systematic position of ‘Platychoerops’ georgei is discussed; this taxon is considered a chimera, and its type I1 belongs to either Chiromyoides or Plesiadapis. Cladistic analysis highlights the paraphyly or polyphyly of all genera of Plesiadapidae. Finally, there is some indication of morphological convergences between European and North American plesiadapids, which may be the result of similar environmental changes on both continents just before the Paleocene-Eocene boundary.
Located in
Library
/
RBINS Staff Publications 2018
Aim To evaluate the biomization technique for reconstructing past vegetation in the Eastern Mediterranean–Black Sea–Caspian-Corridor using an extensive modern pollen data set and comparing reconstructions to potential vegetation and observed land cover data. Location The region between 28–48°N and 22–62°E. Methods We apply the biomization technique to 1,387 modern pollen samples, representing 1,107 entities, to reconstruct the distribution of 13 broad vegetation categories (biomes). We assess the results using estimates of potential natural vegetation from the European Vegetation Map and the Physico-Geographic Atlas of the World. We test whether anthropogenic disturbance affects reconstruction quality using land use information from the Global Land Cover data set. Results The biomization scheme successfully predicts the broadscale patterns of vegetation across the region, including changes with elevation. The technique discriminates deserts from shrublands, the prevalence of woodlands in moister lowland sites, and the presence of temperate and mixed forests at higher elevations. Quantitative assessment of the reconstructions is less satisfactory: the biome is predicted correctly at 44% of the sites in Europe and 33% of the sites overall. The low success rate is not a reflection of anthropogenic impacts: only 33% of the samples are correctly assigned after the removal of sites in anthropogenically altered environments. Open vegetation is less successfully predicted (33%) than forest types (73%), reflecting the under-representation of herbaceous taxa in pollen assemblages and the impact of long-distance pollen transport into open environments. Samples from small basins (<1 km2) are more likely to be reconstructed accurately, with 58% of the sites in Europe and 66% of all sites correctly predicted, probably because they sample an appropriate pollen source area to reflect regional vegetation patterns in relatively heterogeneous landscapes. While methodological biases exist, the low confidence of the quantitative comparisons should not be over-emphasized because the target maps themselves are not accurate representations of vegetation patterns in this region. Main Conclusions The biomization scheme yields reasonable reconstructions of the broadscale vegetation patterns in the Eastern Mediterranean–Black Sea–Caspian-Corridor, particularly if appropriate-sized sampling sites are used. Our results indicate biomization could be used to reconstruct changing patterns of vegetation in response to past climate changes in this region.
Located in
Library
/
RBINS Staff Publications 2017