-
Origin of nitrogen in the English Channel and Southern Bight of the North Sea ecosystems
-
Located in
Library
/
RBINS Staff Publications 2017
-
Origin of the forest steppe and exceptional grassland diversity in Transylvania (central-eastern Europe)
-
Aim The forest steppe of the Transylvanian Plain is a landscape of exceptionally diverse steppe-like and semi-natural grasslands. Is this vegetation a remnant of a once continuous temperate forest extensively cleared by humans, or has the area, since the last glacial, always been a forest steppe? Understanding the processes that drive temperate grassland formation is important because effective management of this biome is critical to the conservation of the European cultural landscape. Location Lake Stiucii, north-western Romania, central-eastern Europe. Methods We analysed multi-proxy variables (pollen, coprophilous fungi, plant macroremains, macrocharcoal) from a 55,000 year discontinuous sequence (c. 55,000–35,000; 13,000–0 cal. yr bp), integrating models of pollen-based vegetation cover, biome reconstruction, global atmospheric simulations and archaeological records. Results Needleleaf woodland occurred during glacial Marine Isotope Stage (MIS) 3, but contracted at the end of this period. Forest coverage of c. 55% (early Holocene) and 65% (mid-Holocene) prevailed through the Holocene, but Bronze Age humans extensively cleared forests after 3700 cal. yr bp. Forest coverage was most widespread between 8600 and 3700 cal. yr bp, whereas grasses, steppe and xerothermic forbs were most extensive between 11,700 and 8600 cal. yr bp and during the last 3700 cal. yr bp. Cerealia pollen indicate the presence of arable agriculture by c. 7000 cal. yr bp. Main conclusions We have provided the first unequivocal evidence for needleleaf woodland during glacial MIS 3 in this region. Extensive forests prevailed prior to 3700 cal. yr bp, challenging the hypothesis that the Transylvanian lowlands were never wooded following the last glaciation. However, these forests were never fully closed either, reflecting dry growing season conditions, recurrent fires and anthropogenic impacts, which have favoured grassland persistence throughout the Holocene. The longevity of natural and semi-natural grasslands in the region may explain their current exceptional biodiversity. This longer-term perspective implies that future climatic warming and associated fire will maintain these grasslands.
Located in
Library
/
RBINS Staff Publications
-
Origin of the forest steppe and exceptional grassland diversity in Transylvania (central-eastern Europe)
-
Aim The forest steppe of the Transylvanian Plain is a landscape of exceptionally diverse steppe-like and semi-natural grasslands. Is this vegetation a remnant of a once continuous temperate forest extensively cleared by humans, or has the area, since the last glacial, always been a forest steppe? Understanding the processes that drive temperate grassland formation is important because effective management of this biome is critical to the conservation of the European cultural landscape. Location Lake Stiucii, north-western Romania, central-eastern Europe. Methods We analysed multi-proxy variables (pollen, coprophilous fungi, plant macroremains, macrocharcoal) from a 55,000 year discontinuous sequence (c. 55,000–35,000; 13,000–0 cal. yr bp), integrating models of pollen-based vegetation cover, biome reconstruction, global atmospheric simulations and archaeological records. Results Needleleaf woodland occurred during glacial Marine Isotope Stage (MIS) 3, but contracted at the end of this period. Forest coverage of c. 55% (early Holocene) and 65% (mid-Holocene) prevailed through the Holocene, but Bronze Age humans extensively cleared forests after 3700 cal. yr bp. Forest coverage was most widespread between 8600 and 3700 cal. yr bp, whereas grasses, steppe and xerothermic forbs were most extensive between 11,700 and 8600 cal. yr bp and during the last 3700 cal. yr bp. Cerealia pollen indicate the presence of arable agriculture by c. 7000 cal. yr bp. Main conclusions We have provided the first unequivocal evidence for needleleaf woodland during glacial MIS 3 in this region. Extensive forests prevailed prior to 3700 cal. yr bp, challenging the hypothesis that the Transylvanian lowlands were never wooded following the last glaciation. However, these forests were never fully closed either, reflecting dry growing season conditions, recurrent fires and anthropogenic impacts, which have favoured grassland persistence throughout the Holocene. The longevity of natural and semi-natural grasslands in the region may explain their current exceptional biodiversity. This longer-term perspective implies that future climatic warming and associated fire will maintain these grasslands.
Located in
Library
/
RBINS Staff Publications
-
Origin, age and diversity of clones
-
Located in
Library
/
RBINS Staff Publications
-
Origin, age and diversity of clones
-
Located in
Library
/
RBINS Staff Publications
-
Original articleSystematics and diversity of the giant soft-shelled turtles (Cryptodira,Trionychidae) from the earliest Eocene of Belgium
-
In 1909, the famous paleontologist Louis Dollo identified two putative new species of giant soft-shelled turtles from the lowest Eocene record of Belgium, ‘Trionyx erquelinnensis’ and ‘Trionyx levalensis’, from Erquelinnes and Leval, respectively. However, these proposals did not meet the requirements of the International Code of Zoological Nomenclature, so they were considered as nomina nuda. The information on these specimens or about any other specimen of this lineage of giant turtles from the Belgian record is currently extremely limited. Relatively scarce material from giant trionychids has been described for the lower Eocene record of other European regions. Considering the available information, all the European material has recently been recognized as belonging to the genus Axestemys, which has a North American origin, and possibly attributable to a single species, Axestemys vittata, which currently lacks a diagnosis. Numerous and well-preserved Belgian specimens are deposited in the Royal Belgian Institute of Natural Sciences. In addition to the cited individuals from Erquelinnes and Leval, additional specimens from both localities, as well as others from Orp-le-Grand, are part of this collection. These specimens, found between the decades of 1910 and 1930, have been recently restored, and their study is carried out here. The presence of Axestemys vittata in Belgium (in Leval and Orp-le-Grand) is confirmed. Knowledge about this species is significantly improved, and a diagnosis is proposed. However, the hypothesis proposed by Dollo is here confirmed, this species being not the only identified in the Belgian record. So, Axestemys erquelinnensis nov. sp. is defined based on the carapace from Erquelinnes known by Dollo, suggesting that the genus probably reached Europe during the Paleocene Eocene Thermal Maximum.
Located in
Library
/
RBINS Staff Publications 2021
-
Origine, caractérisation et mise en place de matériaux riches en fer dans la grotte Scladina (Andenne, Belgique) : processus naturels et sources anthropiques potentielles.
-
Located in
Library
/
RBINS Staff Publications 2024
-
Origins and genetic legacy of prehistoric dogs
-
Located in
Library
/
RBINS Staff Publications 2020
-
Osteological associations with unique tooth developement in manatees (Trichechidae, Sirenia): a detailed look at modern Trichechus and a review of the fossil record
-
Located in
Library
/
RBINS Staff Publications
-
Osteological evidence for the draught exploitation of cattle: First applications of a new methodology
-
Although the aetiology of bone pathologies in cattle is poorly documented, various deformations in the skeleton have been attributed to draught exploitation in the archaeozoological literature. This paper summarizes the results of an osteological study that was undertaken on the feet of modern draught oxen. This led to the definition of a series of draught-related anomalies. In an attempt to describe the pathologies in a more consistent and quantitative way, a scoring scale for each individual bone pathology was established. The developed method is applied to cattle remains from four Roman and one late medieval site. The distribution of the observed pathological indices (PIs) on the first phalanges is interpreted in terms of the age structure of the cattle populations, and the possible modes of cattle exploitation and meat consumption in various settlement types.
Located in
Library
/
RBINS Staff Publications