Skip to content. | Skip to navigation

Personal tools

You are here: Home
3245 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Operationalizing risk-based cumulative effect assessments in the marine environment
Ecosystem-based management requires an assessment of the cumulative effects of human pressures and environmental change. The operationalization and integration of cumulative effects assessments (CEA) into decision-making processes often lacks a comprehensive and transparent framework. A risk-based CEA framework that divides a CEA in risk identification, risk analysis and risk evaluation, could structure such complex analyses and facilitate the establishment of direct science-policy links. Here, we examine carefully the operationalization of such a risk-based CEA framework with the help of eleven contrasting case studies located in Europe, French Polynesia, and Canada. We show that the CEA framework used at local, sub-regional, and regional scales allowed for a consistent, coherent, and transparent comparison of complex assessments. From our analysis, we pinpoint four emerging issues that, if accurately addressed, can improve the take up of CEA outcomes by management: 1) framing of the CEA context and defining risk criteria; 2) describing the roles of scientists and decision-makers; 3) reducing and structuring complexity; and 4) communicating uncertainty. Moreover, with a set of customized tools we describe and analyze for each case study the nature and location of uncertainty as well as trade-offs regarding available knowledge and data used for the CEA. Ultimately, these tools aid decision-makers to recognize potential caveats and repercussions of management decisions. One key recommendation is to differentiate CEA processes and their context in relation to governance advice, marine spatial planning or regulatory advice. We conclude that future research needs to evaluate how effective management measures are in reducing the risk of cumulative effects. Changing governance structures takes time and is often difficult, but we postulate that well-framed and structured CEA can function as a strategic tool to integrate ecosystem considerations across multiple sectorial policies.
Located in Library / RBINS Staff Publications 2020
Article Reference Opinion: Alternative metrics to measure journal impacts: entering in a "free market" era
Located in Library / RBINS Staff Publications
Article Reference Opinion: Are ancient asexuals less burdened? Selfish DNA, transposons and reproductive mode
Located in Library / RBINS Staff Publications
Article Reference Opinion: DNA-repair in ancient asexuals: a new solution to an old problem?
Located in Library / RBINS Staff Publications
Article Reference Opinion: On prediction and description in limnology
Located in Library / RBINS Staff Publications
Article Reference Opportunistic feeding habits of two African freshwater clupeid fishes: DNA metabarcoding unravels spatial differences in diet and microbiome, and identifies new prey taxa
The African Lake Tanganyika clupeids play an important role in the lake's ecosystem and have a high regional economic and nutritional value. Using DNA metabarcoding, we analysed the prey item composition and microbiome of these two clupeid species, Stolothrissa tanganicae and Limnothrissa miodon. We sequenced the mitochondrial COI region of the gut content for prey analysis and the 16S rRNA region of the hindgut content for microbiome analysis of 140 fish sampled at five locations across Lake Tanganyika. Our research confirmed previously reported prey items and discovered prey items that were not reported before, including the jellyfish Limnocnida tanganjicae. The hindgut of the fish harboured 15 bacterial phyla, with the most common being Firmicutes and Proteobacteria. The two clupeid species differed in diet, but not in microbiome. Further, the diet of S. tanganicae, but not its microbiome, varied on a spatial scale, whereas the microbiome, but not the diet, of L. miodon showed spatial variation. Our findings suggest that the Lake Tanganyika clupeids are opportunists, with a diet reflecting the local zooplankton community's composition. These results can serve as a useful reference for monitoring the health status of economically important fish stocks.
Located in Library / RBINS Staff Publications 2023
Article Reference Optical dating of charcoal kiln remains from WWII: A test of accuracy.
Located in Library / RBINS Staff Publications 2024
Article Reference Optical dating of tidal sediments: Potentials and limits inferred from the North Sea coast
Located in Library / RBINS Staff Publications
Article Reference Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties
Located in Library / RBINS Staff Publications
Article Reference Optical remote sensing of turbidity and total suspended matter in the Gulf of Gabes
Optical remote sensing was used to provide scientific information to support environmental management in the Gulf of Gabes that is located in the southeastern coast of Tunisia. This region is characterized by shallow continental shelf subjected to semi-diurnal tides. Industrial activities in this area since the early 1970s may have contributed to the degradation of the biodiversity of the ecosystem with eutrophication problems and disappearance of benthic and planktonic species. To assess the long-term effect of anthropogenic and natural discharges on the Gulf of Gabes, the optical environment of the coastal waters is assessed from in situ measurements of total suspended matter concentration (TSM), Secchi depth and turbidity (TU). This monitoring requires regular seaborne measurements (monthly), which is very expensive and difficult to obtain. The objective of the present study is the evaluation of the Moderate Resolution Imaging Spectrometer (MODIS) AQUA data compared with two sampling campaigns realized at the study area. To map turbidity data from MODIS images, a semi-empirical algorithm was applied at band 667 nm. This bio-optical algorithm has already been calibrated and validated on the Belgian coast. The validation of this algorithm on the Gulf of Gabes using in situ measurements of turbidity and remotely sensed turbidity obtained from MODIS imagery shows a correlation coefficient of 68.9\%. Seasonal and annual average maps for TSM and TU were then computed over the Gulf of Gabes using MODIS imagery. The obtained results of TSM and TU from remotely sensed data are conformable with those obtained through the analysis of in situ measurements. Therefore, remote sensing techniques offer a better and efficient tool for mapping and monitoring turbidity over the whole region.
Located in Library / RBINS Staff Publications