Skip to content. | Skip to navigation

Personal tools

You are here: Home
3237 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Morphometric techniques allow environmental reconstructions from low-diversity ostracode assemblages
Located in Library / RBINS Staff Publications
Article Reference Morphometry and DNA barcoding reveal cryptic diversity in the genus Enteromius (Cypriniformes: Cyprinidae) from the Congo basin, Africa
Located in Library / RBINS Staff Publications 2017
Article Reference MORPHYLL: A database of fossil leaves and their morphological traits
Morphometric characters of fossil leaves such as size and shape are important and widely used sources for reconstructing palaeoenvironments. Various tools, including CLAMP or Leaf Margin Analysis, utilize leaf traits as input parameters for estimating palaeoclimate, mostly based on correlations between traits and climate parameters of extant plants. During the last few years, the scope of information extracted from the morphology of fossil leaves has been further expanded by including leaf economics, which describe correlations between functional leaf traits and ecological strategies. The amount and quality of available data are essential for a successful palaeoecological analysis utilizing leaf traits. Here, the database MORPHYLL is described. This database is devised to offer a web-based resource for fossil leaf trait data. For this purpose, fossil leaves from various collections were digitized and morphometric traits extracted from leaf outlines. Besides metadata such as accession number, repository, fossil site or taxonomic information (for identified specimens), MORPHYLL offers queries for several morphometric parameters and derived ecophysiological traits (e.g., leaf mass per area). Currently, the database contains data from about 6000 fossil leaves from sites in Central Europe, spanning almost the entire Paleogene and part of the early Neogene. The application potential of the database is demonstrated by conducting some exemplary analyses of leaf traits for the Paleocene, Eocene and Oligocene, with the results indicating changes of mean leaf traits through time. For example, the results show leaf mass per area to peak during the Eocene, which is in accordance with general climate development during the Paleogene.
Located in Library / RBINS Staff Publications 2018
Article Reference Moving plates and melting icecaps – Processes and forcing factors in geology, 4th international Geologica Belgica meeting, September 11-14, 2012
-
Located in Library / RBINS Staff Publications
Article Reference Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating
Located in Library / RBINS Staff Publications 2018
Article Reference Mud dynamics in the port of Zeebrugge
Located in Library / RBINS Staff Publications 2019
Article Reference Multi-isotope analysis of bone collagen of Late Pleistocene ungulates reveals niche partitioning and behavioural plasticity of reindeer during MIS 3
Here we present stable carbon, nitrogen and sulfur isotope ratios of collagen extracted from Rangifer, Equus and Bison bone (n = 128) from different stratigraphic levels at the chronologically well-constrained Middle and Upper Palaeolithic site of Les Cottés, France. Samples were taken from five phases of site use (US08, US06, US04 [upper and lower], and US02; ~ 45.8–35.3 ka cal BP) to explore the dietary and spatial palaeoecology of these ungulate species during MIS 3, and the contemporary climate. Temporal trends in δ15N values of all species broadly align with other climatic indicators at the site and the lowest values in US04 correspond to the Heinrich 4 cooling event, reflecting changes in the composition of soil/plant nitrogen at this time. Rangifer collagen is 13C-enriched compared to the other species throughout, consistent with lichen consumption. However, this isotopic niche partitioning between Rangifer and Equus/Bison is most extensive during US04, indicating plasticity in reindeer feeding behaviour, and potentially overall increased lichen biomass during this cooler/more arid phase. Rangifer δ34S values are consistently lower than Equus and Bison, which could be indicative of their more extensive spatial ranges incorporating greater inland areas. Equus and Bison demonstrate a significant decrease in δ34S values through time, which may be linked to contemporary climatic decline.
Located in Library / RBINS Staff Publications 2023
Article Reference Multi-scale Mineralogical Characterization of the Mediterranean Hypercalcified Sponge Petrobiona massiliana (Porifera, Calcarea, Calcaronea)
The massive basal skeleton of a few remnant living hypercalcified sponges rediscovered since the 1960s are valuable representatives of ancient calcium carbonate biomineralization mechanisms in basal Metazoa. A multi-scale mineralogical characterization of the easily accessible Mediterranean living hypercalcified sponge belonging to Calcarea, Petrobiona massiliana (Vacelet and Lévi, 1958), was conducted. Oriented observations in light and electron microscopy of mature and growing areas of the Mg-calcite basal skeleton were combined in order to describe all structural levels from the submicronic to the macroscopic scale. The smallest units produced are ca. 50–100 nm grains that are in a mushy amorphous state before their crystallization. Selected area electron diffraction (SAED) further demonstrated that submicronic grains are assembled into crystallographically coherent clusters or fibers, the latter are even laterally associated into single-crystal bundles. A model of crystallization propagation through amorphous submicronic granular units is proposed to explain the formation of coherent micron-scale structural units. Finally, XRD and EELS analyses highlighted, respectively, inter-individual variation of skeletal Mg contents and heterogeneous spatial distribution of Ca ions in skeletal fibers. All mineralogical features presented here cannot be explained by classical inorganic crystallization principles in super-saturated solutions, but rather underlined a highly biologically regulated formation of the basal skeleton. This study extending recent observations on corals, mollusk and echinoderms confirms that occurrence of submicronic granular units and a possible transient amorphous precursor phase in calcium carbonate skeletons is a common biomineralization strategy already selected by basal metazoans.
Located in Library / RBINS Staff Publications
Article Reference Multi-stage evolution of the monzonitic Larvik Plutonic Complex (Oslo Rift, Norway) and its implications for the formation of the Kodal Fe-Ti-P (− REE) deposit
Located in Library / RBINS Staff Publications 2024
Article Reference Multimodal defensive strategies in larvae of two Hemichroa sawfly species
Located in Library / RBINS Staff Publications