Synthesis of species distributions and hotspots of endangerment is critical for setting conservation priorities to address the acute worldwide biodiversity crisis (Feeley and Silman 2011). Such a synthesis requires enormous efforts to access and unite widely dispersed biodiversity data and to establish open data archiving as a standard scientific practice. The essential first steps in this endeavor are locating primary biodiversity data—where, when, how, and by whom species have been observed or collected—and mak- ing this basic data available to the scientific community. Here, we report on a coordinated initiative of freshwater journals to stimulate a culture of publishing primary biodiversity data. Although freshwaters are tiny in their extent, they harbor a very large fraction of the global species richness, and they have experienced alarming rates of biodiversity decline (Dudgeon et al. 2006). However, freshwater biodiversity is generally neglected or grossly underrepresented in data- mobilization efforts. The importance of broad biodiversity compilations, however, has been increasingly recognized, especially in light of the establishment of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services and the Group on Earth Observations’ Biodiversity Observation Network, and standards and tools have already been put in place to manage large sets of primary biodiversity data. In particular, the Global Biodiversity Information Facility (GBIF; www.gbif.org) collates and centralizes biodiversity information through its participant nodes, which include large topical initiatives such as the Ocean Biogeographic Information System (Costello and Vanden Berghe 2006) and the distributed database network for vertebrates, VertNet (Constable et al. 2010). BioFresh (www.freshwaterbiodiversity.eu), a European Union–funded project, serves the same purpose for the freshwater realm. Recent calls for data archiving in ecology (Whitlock 2011), together with the increasingly common requirement by funding agencies to deposit research data, will be instrumental in making primary biodiversity data available. There is no doubt, however, that scientific journals can and should also play a key role in promoting data-sharing policies (Huang and Qiao 2011). Consequently, we developed the following statement in collaboration with freshwater journal editors to strongly encourage the submission of species-distribution data: “Authors are encouraged to place all species distribution records in a publicly accessible database such as the national Global Biodiversity Information Facility (GBIF) nodes (www.gbif.org) or data centers endorsed by GBIF, including BioFresh (www.freshwaterbiodiversity.eu).” This statement is posted on http:// data.freshwaterbiodiversity.eu/submit data.html along with further instructions and will be widely published in the journals’ instructions for authors and on their Web sites. The editors and publishers of the following journals have approved the statement: Aquatic Botany, Aquatic Conservation: Marine and Freshwater Ecosystems, Aquatic Ecology, Aquatic Sciences, Ecology of Freshwater Fish, Freshwater Biology, Freshwater Reviews, Fundamental and Applied Limnology, Hydrobiologia, Inland Waters, the International Review of Hydrobiology, Freshwater Science (formerly, the Journal of the North American Benthological Society), the Journal of Fish Biology, the Journal of Limnology, the Journal of Plankton Research, Limnetica, Limnologica, Marine and Freshwater Research, and River Systems. Discussions are in prog- ress with an additional nine major journals in the field. What is the benefit to authors in following the recommendations for publishing primary biodiversity data? Certainly, promoting large-scale bio- diversity syntheses is an important idealistic motivation. However, as was outlined by Costello (2009), embrac- ing data-publishing practices also leads to increased recognition of scientists’ work. Papers connected to publicly available data are cited significantly more often, because the data become available for inclusion in broad-scale analyses (Piwowar et al. 2007), which are increasingly gaining importance. Importantly, the publication of primary biodiversity data is technically straightforward and quick, which minimizes the burden on authors. This is achieved by restricting submissions to a minimal standard set of fields, similar to the requirements for sequence submission to GenBank, a hugely successful database with great potential for supporting biodiversity science as well. Endorsement of the proposed data-publishing policy by most major freshwater journals will doubtlessly spur submission of primary biodiversity data, because it would raise awareness and could establish a culture of data publication. It should also encourage a wider range of journals in other areas of ecology and related fields to join the initiative. This would be of great benefit to scientific progress and to biodiversity conservation alike.
Located in
Library
/
RBINS Staff Publications
Arctostylopids are enigmatic mammals known from the Paleocene and early Eocene of Asia and North America. Based on molar similarities, they have most often been grouped with the extinct Notoungulata from South and Central America, but tarsal evidence links them to Asian basal gliriforms. Although Palaeostylops is the best known arctostylopid genus, some points of its content and species level taxonomy are uncertain. Here we report 255 upper and lower jaw fragments of Palaeostylops, five calcanea, three astragali, as well as the first known arctostylopid distal tibia. This new material was collected from the late Paleocene of the Flaming Cliffs area in Mongolia, in a single lens almost exclusively containing arctostylopid remains. Our study of the morphology and size of the new Palaeostylops dental material confirms the validity of two species, P. iturus and P. macrodon, and illustrates their morphological and biometrical variability and diagnostic differences. The distal tibia of Palaeostylops is relatively unspecialised and resembles the Asian gliriforms Pseudictops and Rhombomylus. We also review the relevance of the historically important genus Palaeostylops in view of other, more recently described but less abundant arctostylopid genera. Palaeostylops remains the reference taxon for the arctostylopid anterior dentition and postcranial morphology. For both anatomical regions, arctostylopids differ significantly from notoungulates, and present a mosaic of characters also seen in basal gliriforms. The notoungulate-like molars of Palaeostylops are highly specialized for arctostylopids and the arctostylopid molar morphotype is therefore better illustrated by the early middle Paleocene Asiostylops. This morphotype does not present any similarities to notoungulates, but shares a number of derived characters with basal gliriforms. Among gliriforms, the primitive arctostylopid morphotype is most similar to Astigale from the early Paleocene of South China, and we suggest that Arctostylopidae may therefore be more closely related to Astigalidae than to any other group.
Located in
Library
/
RBINS Staff Publications