Several hundred disarticulated dinosaur bones have been recovered from a large quarry at Wulaga (Heilongjiang Province, China), in the Upper Cretaceous (Maastrichtian) Yuliangze Formation. The Wulaga quarry can be regarded as a monodominant bonebed: more than 80% of the bones belong to a new lambeosaurine hadrosaurid, Sahaliyania elunchunorum gen. et sp. nov. This taxon is characterised by long and slender paroccipital processes, a prominent lateral depression on the dorsal surface of the frontal, a quadratojugal notch that is displaced ventrally on the quadrate, and a prepubic blade that is asymmetrically expanded, with an important emphasis to the dorsal side. Phylogenetic analysis shows that Sahaliyania is a derived lambeosaurine that forms a monophyletic group with the corythosaur and parasauroloph clades. Nevertheless, the exact position of Sahaliyania within this clade cannot be resolved on the basis of the available material. Besides Sahaliyania, other isolated bones display a typical hadrosaurine morphology and are referred to Wulagasaurus dongi gen. et sp. nov., a new taxon characterised by the maxilla pierced by a single foramen below the jugal process, a very slender dentary not pierced by foramina, and by the deltopectoral crest (on the humerus) oriented cranially. Phylogenetic analysis indicates that Wulagasaurus is the most basal hadrosaurine known to date. Phylogeographic data suggests that the hadrosaurines, and thus all hadrosaurids, are of Asian origin, which implies a relatively long ghost lineage of approximately 13 million years for basal hadrosaurines in Asia.
Located in
Library
/
RBINS Staff Publications
A large dinosaur bone bed has been investigated in the Udurchukan Formation (?late Maastrichtian) at Blagoveschensk, Far Eastern Russia. The observed mixture of unstratified fine and coarse sediments in the bone bed is typical for sediment-gravity-flow deposits. It is postulated that sediment gravity flows, originating from the uplifted areas at the borders of the Zeya-Bureya Basin, reworked the dinosaur bones and teeth as a monodominant bone bed. Fossils of the lambeosaurine Amurosaurus riabinini form >90% of the recovered material. The low number of associated skeletal elements at Blagoveschensk indicates that the carcasses were disarticulated well before reworking. Although shed theropod teeth have been found in the bone bed, <2% of the bones exhibit potential tooth marks; scavenging activity was therefore limited, or scavengers had an abundance of prey at hand and did not have to actively seek out bones for nutrients. Perthotaxic features are very rare on the bones, implying that they were not exposed subaerially for any significant length of time before reworking and burial. The underrepresentation of light skeletal elements, the dislocation of the dental batteries, and the numerous fractured long bones suggest that most of the fossils were reworked. The random orientation of the elements might indicate a sudden end to transport before stability could be reached. The size-frequency distributions of the femur, tibia, humerus, and dentary elements reveal an overrepresentation of late juveniles and small subadult specimens, indicative of an attritional death profile for the Amurosaurus fossil assemblage. It is tentatively postulated that the absence of fossils attributable to nestling or early juvenile individuals indicates that younger animals were segregated from adults and could join the herd only when they reached half of the adult size.
Located in
Library
/
RBINS Staff Publications