Skip to content. | Skip to navigation

Personal tools

You are here: Home
3195 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Experimental metamorphosis of Halisarca dujardini larvae (Demospongiae, Halisarcida): Evidence of flagellated cell totipotentiality
The potency of flagellated cells of Halisarca dujardini (Halisarcida, Demospongiae) larvae from the White Sea (Arctic) was investigated experimentally during metamorphosis. Two types of experiments were conducted. First, larvae were maintained in Ca2+ free seawater (CFSW) until the internal cells were released outside through the opening of the posterior pole. These larvae that only composed of flagellated cells (epithelial larvae) were then returned to sea water (SW) to observe their metamorphosis. The posterior aperture closed before they settled on a substratum and started a metamorphosis similar to intact larvae. Secondly, epithelial larvae were, first, further treated in CFSW and then mechanically dissociated. Separated cells or groups of cells were returned to SW, where they constituted large friable conglomerates. After 12-17 h in SW, flagellated cells showed the first steps of dedifferentiation, and regional differentiation was noticeable within conglomerates after approximately 24-36 h. External cells differentiated into pinacocytes while internal cells kept their flagella and became united in a layer. Within 48-72 h, internal cells of the conglomerates formed spherical or ovoid clusters with an internal cavity bearing flagella. These clusters further fused together in a rhagon containing one or two large choanocyte chambers. The sequence of cellular processes in epithelial larvae and in flagellated cell conglomerates was similar. Previous observations indicating the totipotentiality of larval flagellated cells during normal metamorphosis of H. dujardini are thus confirmed. © 2007 Wiley-Liss, Inc.
Located in Library / RBINS Staff Publications
Article Reference Experiments on tsunami induced boulder transport – A review
Located in Library / RBINS Staff Publications 2021
Article Reference Explaining Uncertainty Avoidance in Meciaprojects: Resource Constraints, Strategic Behaviour, or Institutions?
Located in Library / RBINS Staff Publications 2021
Article Reference Exploring sexual dimorphism of human occipital and temporal bones through geometric morphometrics in an identified Western-European sample
Abstract Sex estimation is a paramount step of bioprofiling in both forensic anthropology and osteoarchaeology. When the pelvis is not optimally preserved, anthropologists commonly rely on the cranium to accurately estimate sex. Over the last decades, the geometric morphometric (GM) approach has been used to determine sexual dimorphism of the crania, in size and shape, overcoming some difficulties of traditional visual and metric methods. This article aims to investigate sexual dimorphism of the occipital and temporal region through GM analysis in a metapopulation of 50 Western-European identified individuals. Statistical analyses were performed to compare centroid size and shape data between sexes through the examination of distinct functional modules. Regression and Procrustes ANOVA were used to examine allometric and asymmetrical implications. Discriminant functions, combining size and shape data, were established. Significant dimorphism in size was found, with males having larger crania, confirming the major influence size has on cranial morphology. Allometric relationships were found to be statistically significant in both right and left temporal bones while shape differences between sexes were only significant on the right temporal bone. The visualization of the mean consensus demonstrated that males displayed a larger mastoid process associated with a reduced mastoid triangle and less projected occipital condyles. This exploratory study confirms that GM analysis represents an effective way to quantitatively capture shape of dimorphic structures, even on complex rounded ones such as the mastoid region. Further examination in a larger sample would be valuable to design objective visualization tools that can improve morphoscopic sex estimation methods.
Located in Library / RBINS Staff Publications 2022
Article Reference Exploring species level taxonomy and species delimitation methods in the facultatively self-fertilizing land snail genus Rumina (Gastropoda: Pulmonata)
Located in Library / RBINS Staff Publications
Article Reference Exploring the bushmeat market in Brussels, Belgium: a clandestine luxury business
Located in Library / RBINS Staff Publications 2021
Article Reference Exploring the shell-based taxonomy of the Sri Lankan land snail Corilla H. and A. Adams, 1855 (Pulmonata: Corillidae) using mitochondrial DNA
Located in Library / RBINS Staff Publications 2017
Article Reference chemical/x-molconn-Z Exploring the use of Cytochrome Oxidase c Subunit 1 (COI) for DNA barcoding of free-living marine nematodes
Background: The identification of free-living marine nematodes is difficult because of the paucity of easily scorable diagnostic morphological characters. Consequently, molecular identification tools could solve this problem. Unfortunately, hitherto most of these tools relied on 18S rDNA and 28S rDNA sequences, which often lack sufficient resolution at the species level. In contrast, only a few mitochondrial COI data are available for free-living marine nematodes. Therefore, we investigate the amplification and sequencing success of two partitions of the COI gene, the M1-M6 barcoding region and the I3-M11 partition. Methodology: Both partitions were analysed in 41 nematode species from a wide phylogenetic range. The taxon specific primers for the I3-M11 partition outperformed the universal M1-M6 primers in terms of amplification success (87.8\% vs. 65.8\%, respectively) and produced a higher number of bidirectional COI sequences (65.8\% vs 39.0\%, respectively). A threshold value of 5\% K2P genetic divergence marked a clear DNA barcoding gap separating intra-and interspecific distances: 99.3\% of all interspecific comparisons were 〉0.05, while 99.5\% of all intraspecific comparisons were 〈0.05 K2P distance. Conclusion: The I3-M11 partition reliably identifies a wide range of marine nematodes, and our data show the need for a strict scrutiny of the obtained sequences, since contamination, nuclear pseudogenes and endosymbionts may confuse nematode species identification by COI sequences.
Located in Library / No RBINS Staff publications
Article Reference Exploring the use of micro-computed tomography (micro-CT) in the taxonomy of sea cucumbers: a case-study on the gravel sea cucumber Neopentadactyla mixta (Östergren, 1898) (Echinodermata, Holothuroidea, Phyllophoridae)
Located in Library / RBINS Staff Publications 2021
Article Reference Exposing grey seals as horses and scientists as human
Located in Library / RBINS Staff Publications