-
Table-ronde « Tour d’Europe des programmes de baguage coloré ».
-
Located in
Library
/
RBINS Staff Publications
-
A ziphodont crocodylomorph from the Eraly Eocene of Vastan Lignite Mine (Gujarat, India)
-
Since 2004, the early Eocene Vastan lignite mine (Cambay Shale Formation, Gujarat, Western India) has yielded a rich herpetofauna with frogs, snakes, and lizards (Rage et al., 2008; Folie et al., 2013; Rana et al., 2013). But it is only in January 2012 that the first crocodylomorph remains were retrieved all together in one very thin lens of a few meters width. This small collection includes 4 teeth, 3 fragmentary vertebrae, 1 fragmentary femur, and 2 metapodials. All the teeth are characterized by being distinctly elongated and labiolingually compressed. When well preserved, the mesiodistal carinae bear distinct serrations of the enamel (the ziphodont condition). The largest crown available is estimated to be at least 30 mm tall. In labial or lingual view, the outline of the crown is rather symmetrical. On the other hand, the smallest tooth is asymmetrical being curved in labial view with a nearly straight distal margin and a convex mesial margin. The fragmentary vertebrae share a slightly amphicoelous condition of the centrum. The largest centrum is 32.9 mm long and the neurocentral suture not clearly visible. A modest but well visible hypapophysis is placed close to the anterior edge of the centrum of both these vertebrae. The fragmentary left femur is represented by a proximal portion 45.0 mm long, extending from the totally eroded epiphysis to slightly distally to the fourth trochanter. The largest diameter at the level of the trochanter is 11.6 mm. The ziphodont crocodylomorph teeth reported from a few Paleogene localities of the Indian subcontinent have been referred to both Pristichampsinae and Sebecosuchidae (Sahni & Srivastava, 1976; Buffettaut, 1978; Sahni et al., 1978; Gupta & Kumar, 2013). However, the latter taxon is considered absent in the Tertiary of Asia and amphyplatian vertebrae found in association with ziphodont teeth have been referred to dyrosaurids (Buffettaut, 1978; Turner & Calvo, 2005). Although non-eusuchian crocodylomorphs are restricted to two groups in the Paleogene (Dyrosauridae and Sebecosuchia), our limited knowledge of their postcranial anatomy renders identification of fragmentary remains difficult. Different hypotheses for the identity of the crocodylomorph remains from Vastan are presented.
Located in
Library
/
RBINS Staff Publications
-
The oldest blind snake is in the Early Paleocene of Europe
-
Scolecophidians or blind snakes are among the most primitive and smaller snakes in the world with an average of size of 10 cm. They are worm-like, fossorial, lucifugous and often colourless, eating ants, termites, and their larvae. Based on the revision of Vidal et al (2010) they are represented by 5 families mainly living in tropical areas and have had a long history on Gondwana. The only European representative of this group is Typhlops vermicularis that lives around the Mediterranean Basin. Here we describe two isolated procoelous trunk vertebrae from the early Paleocene of Hainin (MP1-5, Belgium), a locality already known for the oldest amphisbaenian lizards (Folie et al 2013) and the earliest European scincoid lizards (Folie et al 2005). These vertebrae are clearly attributed to a scolecophian by the following characters (List, 1966): they are 1.5 mm long and 1 mm high and wide; the centrum is narrow and the hemal keel is absent; the orientation of the prezygapophyses processes that serve for muscle attachment strongly differs from the one of the prezygapophyseal facets; the neural arch is depressed and does not present a posterior medial notch nor a neural spine. Fossil scolecophidians are identified based on their vertebrae but they are generally considered as not diagnostic at a familial, generic or specific level. However, some characters have recently been proposed to differentiate the family level on the basis of the shape and placement of the synapophyses, shape of the cotyle, size of the zygosphene, and shape of the prezygopophyseal facets (Gelnaw & Mead, 2010). Based on these features, the Hainin vertebrae differ from those of Anomalepidae and Leptotyphlopidae, and resemble those of Typhlopidae by similar neural arch morphology and height, development and orientation of the paradiapophysis, and morphology of the neural canal, cotyle and condyle. Record of fossil scolecophidians indicates their presence in North America, Europe, Africa and Australia. Before this study, the oldest representatives of this group were known from the late Paleocene of Adrar Mgorn (Ouarzazate Basin) in Morrocco and from the earliest Eocene of Dormaal (Tienen Formation, MP7) in Belgium. The scolecophidian from Hainin resembles more the one from Dormaal than that from Adrar Mgorn by narrower centrum and neural arch. The width of the neural arch in Typhlops is similar to both Belgian scolecophidians, however, the centrum is even narrower. By these characters, the scolecophidian from Hainin could represent a basal Typhlopidae.
Located in
Library
/
RBINS Staff Publications
-
Reconstruction of the skeleton of Teilhardina belgica, the oldest European Primate
-
Teilhardina belgica is one of the earliest fossil primates ever recovered and the oldest fossil primate from Europe (~ 56 Million years). It was originally described by Teilhard de Chardin (1927) from the MP7 reference level of Dormaal (Belgium), which is situated at the Paleocene-Eocene boundary at the base of the Tienen Formation (Smith & Smith, 1996). Teilhardina is known on all three northern continents in association with the carbon isotope excursion marking the Paleocene–Eocene Thermal Maximum. Relative position within the carbon isotope excursion indicates that Asian Teilhardina asiatica is oldest, European T. belgica is younger, and North American T. brandti and T. americana are, successively, youngest. Analysis of morphological dental characteristics of all four species supports an Asian origin and a westward Asia-to-Europe-to-North America dispersal for Teilhardina. High-resolution isotope stratigraphy indicates that this dispersal happened in an interval of 25,000 years (Smith et al, 2006). Moreover, Teilhardina is one of the most primitive fossil primates known to date and the earliest haplorhine with associated three dimensional postcranials making it relevant to a reconstruction of the ancestral primate morphotype. As such, Teilhardina has often been hypothesized as a basal tarsiiform on the basis of its primitive dental formula with four premolars and a simplified molar cusp pattern. Until recently, little was known concerning its postcranial anatomy with the exception of its well-known tarsals. Here we describe additional postcranial elements for Teilhardina belgica and compare these to other tarsiiforms and to primitive adapiforms. Teilhardina is a small primate with an estimated body mass between 30-60 g, similar to the size of a mouse lemur. Its hindlimb anatomy suggests frequent and forceful leaping with excellent foot mobility and grasping capabilities. It can now be established that it exhibits critical primate postcranial synapomorphies such as a grasping hallux and a tall knee (Gebo et al, 2012), and nailed digits (Rose et al, 2011). This anatomical pattern and behavioral profile is similar to what has been inferred before for other omomyids and adapiforms. The most unusual feature of Teilhardina belgica is its elongated middle phalanges suggesting that this early primate had very long fingers similar to those of living tarsiers. Our phyletic analysis indicates that we can identify several postcranial characteristics shared in common for stem primates as well as note several derived postcranial characters for Tarsiiformes.
Located in
Library
/
RBINS Staff Publications
-
Early Eocene cambaytheres from Indo-Pakistan are the sister group of Perissodactyls
-
Cambaytherium, Nakusia, and Kalitherium are closely related early Eocene mammals from the Indo-Pakistan region that have been assigned to Perissodactyla (Laurasiatheria)or Anthracobunidae. The latter have been variously considered artiodactyls or perissodactyls, but more recently are usually placed at the base of the order Proboscidea or of the more inclusive Tethytheria (Afrotheria). We present new evidence from the dentition, skull, and postcranial skeleton of Cambaytherium, from Gujarat, India (ca. 54.5 Ma), that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla. Cambaytherium was more robust than basal perissodactyls such as ″Hyracotherium″ and Homogalax, and had a body mass of ~25-27 kg based on humeral, radial, and dental regressions. Perissodactyl synapomorphies include a transverse nasal-frontal suture, twinned molar metaconids, and an astragalus with deeply grooved trochlea and a saddleshaped navicular facet. Like perissodactyls, cambaytheres are mesaxonic and have hooflike unguals and a cursorially-adapted skeleton. Plesiomorphic traits compared to basal perissodactyls include bunodont molars with large conules and almost no hint of bilophodonty, unmolarized premolars, sacrum with four vertebrae, humerus with distally extensive pectoral crest and distal articulation lacking a capitular tail, distal radius without discrete scaphoid and lunate fossae, femur with low greater trochanter, calcaneus robust and wide with rounded ectal facet, astragalus wide with moderately long neck and vestigial astragalar foramen, navicular and cuboid short and wide, metapodials short and robust, and Mc I and Mt V present. In most or all of these traits cambaytheres are intermediate between phenacodontid condylarths and perissodactyls but closer to the latter. Our phylogenetic analyses place cambaytheres just outside perissodactyls, and place anthracobunids among primitive perissodactyls. However, similarities between cambaytheres and anthracobunids suggest that they are closely related, and future discovery of skeletal material of anthracobunids will provide a test of this hypothesis. Our results indicate that Anthracobunidae are not Proboscidea or tethytheres, and suggest that the origin of Perissodactyla may have taken place on the drifting Indian plate. How the progenitors of perissodactyls reached India is more problematic but might have involved land connections with Afro-Arabia during the Paleocene. Field work and research supported by the National Geographic Society.
Located in
Library
/
RBINS Staff Publications
-
Elementen van de populatiedynamiek van de Oehoe (Bubo bubo) in de Ardennen.
-
Located in
Library
/
RBINS Staff Publications
-
Habitat selection by Red-breasted Geese (Branta ruficollis) wintering in Eastern Europe
-
Located in
Library
/
RBINS Staff Publications
-
Satellite tracking of the highly endangered Slender-billed Curlew : why and how ?
-
Located in
Library
/
RBINS Staff Publications
-
An international conservation project for the Slender-billed Curlew (Numenius tenuirostris) in Greece: the first results.
-
Located in
Library
/
RBINS Staff Publications
-
A new approach to locating Slender-billed Curlew breeding grounds.
-
Located in
Library
/
RBINS Staff Publications