Skip to content. | Skip to navigation

Personal tools

You are here: Home
2453 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Nautiloid turnover across the Cretaceous/Paleogene boundary: Chixculub impact, Deccan volcanism and Europe as key?
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference La mort des ammonites, délice turc : quatre nouveaux sites de la limite Crétacé/Tertiaire documentant deux faunes d'ammonoïdes finmaastrichtiennes très différentes et contemporaines du volcanisme du Deccan
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference A Step Towards Accurate Integrated Monitoring of The Sinking Zones in the Coastal Area of Antwerp Due to Possible Hydrogeological and Geomechanical Processes
Located in Library / RBINS Staff Publications 2023
Inproceedings Reference A Summary Review Based on Case Studies of the Challenges Related to the Comparison of Displacements Measured by PS-InSAR and Simulated by Geomechanical Coupled to Groundwater Models.
Located in Library / RBINS Staff Publications 2023
Inproceedings Reference Difficulties arising when PS-InSAR displacement measurements are compared to results from geomechanical and groundwater flow computations
Located in Library / RBINS Staff Publications 2023
Inproceedings Reference Subsidence Evolution of Antwerp Region, Belgium over 77 Years, Using Historical Levelling and GNSS Data and Recent Persistent Scatterers Interferometry Observations
Located in Library / RBINS Staff Publications 2023
Webpublished Reference Contrasting saltmarsh vegetation impacts under increasing sea level rise rates
The resilience of saltmarshes mainly depends on their ability to gain elevation by sediment accretion to keep pace with sea level rise. While vegetation is known to facilitate sediment accretion at the plant scale by trapping mineral sediments and producing organic matter, the long- term impact at the landscape scale is still poorly understood. Here we use the biogeomorphic model Demeter to reveal contrasting vegetation impacts on spatial patterns of sediment accretion under different sea level rise regimes. Under contemporary sea level rise rates (2-10 mm/yr), vegetation inhibits sediment transport from tidal channels to platform interiors and creates levee- depression patterns. Hence, intertidal platforms accrete slower with vegetation than without, but this trend attenuates with increasing sea level rise rate, as water depth increases, and vegetation drag decreases. Under extreme sea level rise rate (20 mm/yr), platform interiors don’t keep up and turn into open water, while vegetation allows to preserve intertidal levees. Our results help to better understand some basic biophysical mechanisms that will control the fate of coastal wetlands under global climate change.
Located in Library / RBINS Staff Publications 2024
Webpublished Reference North Sea Hydrodynamics With Nested Models
The North Sea is an epeiric sea on the European continental shelf, which connects to the Atlantic Ocean through the English Channel in the South and the Norwegian Sea in the North. It hosts key north European shipping lanes, and it is a major fishery and a rich source of energy resources, including wind, wave and solar power. Here we present a nested hydrodynamics model that is calibrated against in situ data for the year 2009, and validated for the years 2010, 2011 and 2015, which present a large range of contrasting North Atlantic Oscillation (NAO) indices. Our results are openly available and provide 10+ years of hydrodynamics data (sea surface elevation, sea water velocity, potential temperature and salinity) with a resolution of 30 arcseconds in the Southern Bight of the North Sea, and 2 arcminutes elsewhere. With our model and resulting dataset, we aim at supporting marine research and policy in a highly, anthropogenically impacted system, allowing stakeholders to take informed decisions to sustainably manage its valuable resources.
Located in Library / RBINS Staff Publications 2024
Webpublished Reference Ecosystem Modeling in the North Sea
The North Sea is an epeiric sea on the European continental shelf, which connects to the Atlantic Ocean through the English Channel in the South and the Norwegian Sea in the North. It hosts key north European shipping lanes, and it is a major fishery and a rich source of energy resources, including wind and wave power. Here we present a multi-year effort at developing a modeling infrastructure to support research in marine ecology and biogeochemistry in such highly, anthropogenically impacted system, and allow stakeholders taking informed decisions to sustainably manage its valuable resources. Our approach is fully open-source and mainly based on the numerical model COHERENS to simulate hydrodynamical and biogeochemical processes in three spatial dimensions and time. Our model is specifically validated against relevant in situ data in view of its main applications, for which it provides a large-scale virtual laboratory. For example, our model is used to investigate the impact of floating solar panel farms on primary production, but also to assess the efficiency of enhanced silicate weathering to serve as negative emission technology.
Located in Library / RBINS Staff Publications 2023
Webpublished Reference Dense Vegetation Hinders Sediment Transport Towards Saltmarsh Interiors
The resilience of saltmarshes mainly depends on their ability to gain elevation by sediment accretion to keep pace with sea level rise, and tidal channels play a crucial role in the supply of sediments towards their interiors. While feedbacks between vegetation and geomorphology are increasingly recognized as key drivers shaping a variety of tidal channel network structures, the resulting impact on long-term sediment accretion over the vegetated platforms remains poorly studied. At the plant-scale, vegetation facilitates sediment accretion by trapping mineral sediments and producing organic matter. At the landscape-scale, vegetation promotes the formation of dense, branching, and meandering tidal channel networks, which reduce the distance between saltmarsh interiors and their source of suspended sediments. In this presentation, we use a biogeomorphic model validated against data to reveal two mechanisms by which vegetation also hinders sediment transport towards saltmarsh interiors. First, vegetation concentrates tidal flow and sediment transport inside channels, which reduces sediment availability for deposition on saltmarsh platforms. Secondly, vegetation enhances sediment deposition close to channels, which deprives saltmarsh interiors of suspended sediments, creating levee-depression patterns and leading to pond formation. In the present context of accelerating sea level rise and human-induced decrease of sediment supply, our findings suggest that saltmarshes are more vulnerable than previously thought.
Located in Library / RBINS Staff Publications 2024