-
Revue des minéralisations polymétalliques (Fe-Pb-Zn-REE-U) du district minier de Nefza (N. Tunisie) : rôle du contexte géodynamique et du magmatisme miocène
-
Located in
Library
/
RBINS Staff Publications
-
Cathodoluminescence et microanalyse électronique des phosphates de terres rares (monazite «grise» et xénotime) du Paléozoïque belge
-
Located in
Library
/
RBINS Staff Publications
-
Managing geological uncertainty in CO2-EOR reservoir assessments
-
Located in
Library
/
RBINS Staff Publications
-
The potential of geological storage of CO2 in Austria: a techno-economic assessment
-
Located in
Library
/
RBINS Staff Publications
-
Environmental Archaeology in Brussels (Belgium): The development of a framework
-
Located in
Library
/
RBINS Staff Publications 2023
-
Exploring the potential of Lake Hamana (Shizuoka Prefecture, Japan) to hold a long and reliable sedimentary record of paleo-earthquakes and -tsunami along the Nankai-Suruga Trough
-
Coastal Lake Hamana is positioned near the convergent tectonic boundary of the Nankai-Suruga Trough, along which the Philippine Sea slab subducts underneath the Eurasian Plate, giving rise to repeated tsunamigenic megathrust earthquakes (Mw≥8). A good understanding of the earthquake- and tsunami-triggering mechanisms in terms of rupture mode and recurrence pattern in time and space, is crucial in order to better estimate the complexity of seismic risks for the densely populated Enshu-nada coast. Based on existing historic data of paleoseismicity (last ~1300 years), the easternmost segment (Tokai) of the Nankai-Suruga Trough appears to exhibit a seismic gap and is expected to rupture in the near future, causing the next ‘Tokai earthquake’. Studying the sedimentary infill of Lake Hamana can help to fine-tune hazard assessment in the area of interest. Thanks to its extensive accommodation space, the Hamana lake basin is considered to be a good recorder of past events. Fieldwork (autumn 2014) comprised a reflection-seismic survey for imaging the lake’s stratigraphic features, based on which locations for gravity coring were selected. A systematic sampling of bottom sediments from different sites makes it possible to evaluate vertical as well as lateral changes in depositional environment, including event-deposits generated by earthquakes and tsunami. For identification of marine incursions caused by tsunami waves, a set of sedimentological, geophysical, geochemical and micropaleontological analyses are applied on the cored sequences. Radionuclide dating provides the necessary timeframe and information on prevailing sedimentation rates. Sites with the potential of recording complete and long event histories will be sampled with long cores during the upcoming field season (autumn 2015).
Located in
Library
/
No RBINS Staff publications
-
Exploring the potential of Lake Hamana (Shizuoka Prefecture, Japan) to hold a long and reliable sedimentary record of paleo-earthquakes and -tsunami along the Nankai-Suruga Trough.
-
Coastal Lake Hamana is located near the convergent tectonic boundary of the Nankai-Suruga Trough, along which the Philippine Sea slab subducts underneath the Eurasian Plate, giving rise to repeated tsunamigenic megathrust earthquakes (Mw≥8). A good understanding of the earthquake- and tsunami-triggering mechanisms in terms of rupture mode and recurrence pattern in time and space, is crucial in order to better estimate the complexity of seismic risks for the densely populated Enshu-nada coast. Based on existing historical data of paleoseismicity (last ~1300 years), the easternmost segment (Tōkai segment) of the Nankai-Suruga Trough appears to exhibit a seismic gap and is expected to rupture in the near future, causing the next “Tōkai earthquake”. Studying the sedimentary infill of Lake Hamana may help to fine-tune hazard assessment in the area of interest. Thanks to its extensive accommodation space, the Hamana lake basin is considered to be a good archive of past “big wave” events. Fieldwork (Oct.-Nov. 2014) comprised a reflection-seismic survey for imaging the lake’s stratigraphic features, based on which favourable locations for gravity coring were selected. A systematic sampling of bottom sediments from different sites enables us to evaluate vertical as well as lateral changes in depositional environment, including event deposits generated by tsunamis and tropical storms (i.e. typhoons). An important part of the study is dedicated to qualitatively distinguish sedimentary facies of storm deposits from the ones generated by tsunamis, since this is an essential step in correctly assessing future hazards. For identification of marine tsunami incursions, a set of sedimentological, geophysical, geochemical and micropaleontological analyses are applied on the core sediments in a multi-proxy approach. Radionuclide dating provides the necessary timeframe and information on prevailing sedimentation rates. Sites bearing the potential of recording complete and long event histories will be sampled with long cores.
Located in
Library
/
No RBINS Staff publications
-
On how to extract the paleotsunami history from a coastal lake record
-
Coastal lake records can be successfully used for reconstructing continuous histories of tsunamigenic megathrust earthquakes. Here, we apply a wide range of methods on one Japanese and two Chilean coastal lakes and show that the selection of coring locations benefits significantly from accompanying geophysical survey data. High-resolution seismic profiles display several strong reflectors in all three lake basins, allowing us to map the depth and extent of coarse-grained tsunami deposits. Side scan sonar imagery enables us to reconstruct past tsunami inundation pathways.
Located in
Library
/
No RBINS Staff publications
-
The QuakeRecNankai project: Palaeoseismic data for improved seismic hazard assessment along the Nankai Trough, Japan
-
Located in
Library
/
No RBINS Staff publications
-
The QuakeRecNankai project: reconstructing past earthquakes and tsunamis along the Nankai Trough, south central Japan
-
The Nankai-Suruga subduction zone faces the densely populated and highly industrialised coastline of south central Japan. The largest possible class of earthquake on the subduction interface could exceed magnitude 9, with tsunami travel times to the closest shorelines of less than 30 minutes. In this presentation, we review geological evidence for past earthquakes and tsunamis in this region and introduce the QuakeRecNankai project, a Belgian, Japanese and German collaboration that aims to reconstruct past seismic shaking and tsunami occurrence from Lake Hamana and the Fuji Five Lakes at the eastern end of the Nankai Trough.
Located in
Library
/
No RBINS Staff publications