CYCLOPIDES (CRUSTACÉS COPÉPODES)

PAR

KNUT LINDBERG (Lund)

CACHELDING CHECORES

Town T Solling Will Trees

CYCLOPIDES

(CRUSTACÉS COPÉPODES)

Le Président du Comité de coordination pour les recherches hydrobiologiques au lac Tanganika, M. V. Van Straelen, m'a confié pour étude 116 échantillons de plancton récoltés par la Mission hydrobiologique belge au lac Tanganika en 1946-1947. Ce matériel provenait de 84 stations différentes.

Comme il ne sera question ici que des Cyclopides, les 28 échantillons qui n'en contenaient pas ont été déduits du total. Il reste ainsi 88 échantillons de 67 stations, représentant 86 pêches différentes.

La grande majorité, soit 61 échantillons (59 pêches différentes) de 56 stations, ont été récoltés dans le lac Tanganika et au voisinage de celui-ci. 26 échantillons, récoltés de 10 stations, proviennent du lac Kivu et 1 seul du Parc National Albert.

Le matériel étudié se répartit par conséquent ainsi :

	Nombre d'échantillons	Stations différentes	Pêches différentes
	-	-	
I. — Lac Tanganika	61	56	59
A. Récoltes en eaux libres du lac B. Récoltes littorales et dans des eau		38	38
proches du lac	22	18	21
II. — Lac Kivu	26	10	26
A. Récoltes en eaux libres du lac	10	3	10
B. Récoltes littorales	16	7	16
III. — Parc National Albert	1	1	1
	88	67	86

Je donne d'abord la liste des espèces déterminées classées par station. Pour l'emplacement et la description de celles-ci ainsi que pour les dates des récoltes le lecteur est prié de se référer au Relevé des stations (vol. II, fasc. 1) par E. Leloup, 1949, et, pour les détails physico-chimiques, biologiques et autres, aux mémoires qui traiteront de ces différentes questions.

I. — LAC TANGANIKA.

A. — STATIONS DANS LES EAUX LIBRES DU LAC.

Stations no	ESPECES	Stations no	ESPÈCES
-			
1	Mesocyclops leuckarti (CLAUS). Q 1.	77	Eucyclops laevimargo (SARS). Jeunes 2.
4	Mesocyclops leuckarti (CLAUS). Q Q 3.		Mesocyclops leuckarti (CLAUS). Q Q 4, ♂ 1,
7	Mesocyclops leuckarti (CLAUS). Environ 10.		jeunes 7.
13	Mesocyclops leuckarti (CLAUS). Nombreux.	84	Mesocyclops leuckarti (CLAUS). Nombreux.
	Thermocyclops schuurmanæ (Kiefer). Peu.	87	Mesocyclops leuckarti (CLAUS). Nombreux.
15	Eucyclops semiserratus (SARS). Q Q quelques,	88	Eucyclops rarispinus (SARS). Q 1.
	of 1.	105	Mesocyclops leuckarti (CLAUS). Q Q 12.
	Eucyclops caparti sp. nov. of 1.	222	Thermocyclops schuurmanæ (KIEFER). ♀♀11.
	Microcyclops cunningtoni (SARS). of 4.	111	Mesocyclops leuckarti (CLAUS). Assez nom-
	Mesocyclops leuckarti (CLAUS). Q Q 2, jeune 1.	101	breux.
20	Mesocyclops leuckarti (CLAUS). Extrêmement	121	Mesocyclops leuckarti (CLAUS). Q Q 17. Mesocyclops leuckarti (CLAUS). Très nombreux.
24	nombreux.	131	Mesocyclops leuckarti (CLAUS). Tres nombreux. Mesocyclops leuckarti (CLAUS). Assez nom-
21	Mesocyclops leuckarti (CLAUS). Nombreux.	141	breux.
24	Mesocyclops leuckarti (CLAUS). Nombreux.	178	Mesocyclops leuckarti (CLAUS). Assez nom-
	Thermocyclops schuurmanæ (KIEFER). Quelques.	110	breux.
25	Mesocyclops leuckarti (CLAUS). Assez nom-	234	Mesocyclops leuckarti (CLAUS). Peu.
	breux.		Thermocyclops schuurmanæ (KIEFER). Peu.
29	Megacyclops viridis (JURINE). Jeunes 2.	255	Mesocyclops leuckarti (CLAUS). Assez nom-
	Mesocyclops leuckarti (CLAUS). Très nombreux.		breux.
32	Microcyclops cunningtoni (SARS). Q Q environ 15, σ σ 2, jeunes 2.	258	Mesocyclops leuckarti (CLAUS). Assez nombreux.
	Mesocyclops leuckarti (CLAUS). Quelques.		Thermocyclops schuurmanæ (Kiefer). Peu.
38	Mesocyclops leuckarti (CLAUS). Très peu.	271	Mesocyclops leuckarti (CLAUS). Assez nom-
45	Tropocyclops tenellus (SARS). Quelques.		breux.
	Mesocyclops leuckarti (CLAUS). Assez nom-	289	Mesocyclops leuckarti (CLAUS). Q 1.
	breux.	298	Mesocyclops leuckarti (CLAUS). Assez nom-
49	Microcyclops cunningtoni (SARS). Q Q 2.		breux.
	Mesocyclops leuckarti (CLAUS). Plusieurs.	300	Mesocyclops leuckarti (CLAUS). Nombreux.
53	Mesocyclops leuckarti(CLAUS). Très nombreux.	302	Mesocyclops leuckarti (CLAUS). Assez nom-
54	? Cryptocyclops attenuatus (SARS). 71.		breux.
	Mesocyclops leuckarti (CLAUS). Quelques.		Thermocyclops schuurmanæ (Kiefer). Très
	Thermocyclops schuurmanæ (Kiefer). Envi-		peu.
	ron 12.	305	Mesocyclops leuckarti (CLAUS). Quelques.
62	Mesocyclops leuckarti (CLAUS). Nombreux. Thermocyclops neglectus (SARS). ♀ 1.	351 <i>bis</i>	Tropocyclops tenellus (SARS). Extrêmement nombreux.
75	Mesocyclops leuckarti (CLAUS). Q1, copépodite 1.		Mesocyclops leuckarti (CLAUS). Extrêmement nombreux.

B. — Stations des bords du lac et stations des environs à eaux étrangères à celles du lac.

3	Mesocyclops leuckarti (CLAUS). 71.
33	Macrocyclops albidus (JURINE). Q 1.
	Eucyclops serrulatus (FISCHER). Q Q 2.
	Eucyclops lævimargo (SARS). Q 1.
	Eucyclops paucidenticulatus sp. nov. φ φ 2, σ 1, copépodite 1.
	Microcyclops cunningtoni (SARS). Q Q 12, 71.
	Mesocyclops leuckarti (CLAUS). 2.

41	Eucyclops lævimargo (SARS), Q 1.
	Mesocyclops leuckarti (CLAUS). Copépodite 1.
58	Cryptocyclops bicolor linjanticus (KIEFER). Q Q 3, g 1, copépodite 1.
	Mesocyclops leuckarti (CLAUS). Assez nom- breux copépodites.
	Thermocyclops neglectus (SARS). Q Q 5, of of 3, copépodites 3.

	K. EINDBERG.	- CICLOI ID	Tito	4	.0
Stations nº	ESPÈCES	Stations no		ESPÈCES —	
58	Eucyclops semiserratus (SARS). Q Q 8, ♂ 1. Eucyclops rarispinus (SARS). Q Q 4, ♂ 1, copé- podites 2-3 et fragments. Afrocyclops gibsoni (BRADY). Q Q 7, ♂ ♂ 3.	172 253	Mesocyclops leu Microcyclops je endommagée Ectocyclops hirs	enkinæ (Lown e).	NDES). Q 1 (très
	Tropocyclops confinis (KIEFER). Q 1. Microcyclops varicans (SARS). Q Q 5. Cryptocyclops tanganicæ (GURNEY). Q Q 5, Of of 2 et fragments. Mesocyclops leuckarti (CLAUS). Environ 50	260	dite 1. Macrocyclops all Eucyclops euaca magées). Ectocyclops rub	nthus (SARS).	Q Q 22 (endom-
	QQ, of of et copépodites. Thermocyclops neglectus (SARS). QQ 29, copépodites 7. Thermocyclops schuurmanaæ (Kiefer). Q1.	383	nes 13. Mesocyclops leu Ectocyclops rub Mesocyclops leu	escens Brady.	Q Q jeunes 2.
68	Eucyclops caparti sp. nov. $Q Q 3$, $O O 5 + 1$ fragment, copépodite 1. Cryptocyclops tanganicæ (GURNEY). $Q Q 5$, $O O 2$ et fragments.	Albertville. Plage boueuse et rocheuse, 8.XI.1946	Afrocyclops gib	soni (BRADY).	ΥΥ. φφ2 et frag-
99	Mesocyclops leuckarti (CLAUS). Environ 10. Afrocyclops gibsoni (BRADY). ♀ 1. Thermocyclops neglectus (SARS). ♀ ♀ 7, copépodites 3.	Kalumbé,	Mesocyclops leu jeunes 3.		W. f. 1925
126	Eucyclops lævimargo (SARS). Q 1. Mesocyclops leuckarti (CLAUS). Jeunes 2. Thermocyclops neglectus (SARS). Environ 10.	devant camp Jacques, à 10 km au Sud d'Albertville,	Thermocyclops Thermocyclops ron 12.	pachysetosus	sp. nov. Envi-
130	Eucyclops serrulatus (FISCHER). Q Q 22, ♂ 1. Microcyclops varicans (SARS). Q Q 4. Microcyclops davidi (CHAPPUIS). Q 1 (endommagée). Mesocyclops leuckarti (CLAUS). Q Q 2.	25.XI.1946 Idem	Microcyclops va Mesocyclops leu	ckarti (CLAUS).	Nombreux.
138	Eucyclops semiserratus (SARS). Q Q 2, Q Q 2, copépodites 5. Microcyclops cunningtoni (SARS). Q Q 2. Mesocyclops leuckarti (CLAUS). Q Q 2, copépodites 7.	Idem	Thermocyclops copépodites: Thermocyclops Cryptocyclops 1 Q1, 71. Mesocyclops leuc	3. pachysetosus s picolor linjant	sp. nov. Q Q 8.
152	Mesocyclops leuckarti (CLAUS). Très peu (copépodites).		Thermocyclops in	hyalinus (REHB	ERG). Q Q 5.
156	Tropocyclops confinis (Kiefer). 71.				• • •
	II. — LA	c kivu.			
	A. — STATIONS DANS LE	ES EAUX LIBRES	DU LAC		
505 516	Mesocyclops leuckarti(CLAUS). Très nombreux. Tropocyclops confinis (KIEFER). Extrêmement nombreux. Mesocyclops leuckarti(CLAUS). Peu.	516 520	Mesocyclops leuc Mesocyclops leuc Thermocyclops ((1 Q trouvée	ckarti(CLAUS). T	rès nombreux.

505	Mesocyclops leuckarti(CLAUS). Très nombreux.	516	Mesocyclops leuckarti(CLAUS), Très nombreux.
516	Tropocyclops confinis (KIEFER). Extrêmement nombreux.	520	$Mesocyclops\ leuckarti({\tt CLAUS}).$ Très nombreux.
3	Mesocyclops leuckarti(CLAUS). Peu.		Thermocyclops consimilis (KIEFER). Très peu (1 Q trouvée).

B. — Stations des bords du lac et stations des environs A EAUX ÉTRANGÈRES A CELLES DU LAC.

2 83	*	Tropocyclops confinis (KIEFER). Très nom-	502	Mesocyclops leuckarti	(CLAUS). Jo	eunes 4	4.
		breux.	502	Tropocyclops confinis	(KIEFER).	Très	nom-
		Mesocyclops leuckarti (CLAUS). Extrêmement		breux.	(,	1100	
	35	nombreux (surtout jeunes).		Mesocyclops leuckarti	(CLAUS).	Assez	nom-
		Thermocyclops consimilis (KIEFER). Peu.		breux.			

K. LINDBERG. — CYCLOPIDES

Stations no	ESPÈCES	Stations no	ESPÈCES
-			
	Thermocyclops consimilis (KIEFER). Assez nombreux.	507	Eucyclops serrulatus (FISCHER). Nombreux. Eucyclops cf. sublævis (SARS). Quelques.
502	Tropocyclops confinis (KIEFER). ♀ 1, ♂1. Mesocyclops leuckarti (CLAUS). Quelques.		Afrocyclops doryphorus (KIEFER). Nombreux. Tropocyclops confinis (KIEFER). Q 1.
506	Tropocyclops confinis (KIEFER). Très nombreux.		? Ectocyclops hirsutus Kiefer. Copépodite 1. Cryptocyclops bicolor linjanticus (Kiefer).
	Mesocyclops leuckarti (CLAUS). Assez nombreux.	507	Q1, &1. Eucyclops cf. sublævis (SARS). Q1, &1.
	Thermocyclops consimilis (KIEFER). Assez nombreux.		Afrocyclops gibsoni (BRADY). Q Q 2, 0 1. Tropocyclops confinis (KIEFER). Q Q 3.
506	Ectocyclops rubescens Brady. Assez nom- breux.		Mesocyclops leuckarti (CLAUS). Q Q 2, copépodites quelques.
506	Eucyclops serrulatus (FISCHER). Q 1, 7, 1, copépodite 1. Afrocyclops gibsoni (BRADY). Q 1, 7, 1.	509	Mesocyclops leuckarti (CLAUS). Environ 10. Thermocyclops retroversus (KIEFER). Extrêmement nombreux.
	Tropocyclops confinis (KIEFER). Nombreux. Mesocyclops leuckarti(CLAUS). Très nombreux.	515	Paracyclops affinis (SARS). of 2. Ectocyclops sp. Copépodite 1.
	Thermocyclops consimilis (KIEFER). Extrêmement nombreux.	518	Microcyclops sp. Copépodite 1. Microcyclops varicans (SARS). Q 1, copépodite 1.

III. — PARC NATIONAL ALBERT.

-		72	
S	al	tion	no

ESPÈCES

535	Afrocyclops doryphus (Kiefer). Q 1.
Mare dans la	Microcyclops varicans (SARS). Q 1.
plaine de	Cryptocyclops bicolor linjanticus (KIEFER)
Ruindi, près	Q Q 2.
de Kamandé,	Thermocyclops schmeili (POPPE et MRÁZEK)
8.VIII.1947	Assez nombreux.

Tableau récapitulatif.

Eucyclops serrulatus (FISCHER) 33, Eucyclops cf. sublævis (SARS) 50' Eucyclops euacanthus (SARS) 26 Eucyclops semiserratus (SARS) 15, Eucyclops lævimargo (SARS) 33, Eucyclops rarispinus (SARS) 55,		Nom d'éct tille	Bords, etc.		+ + Pertitoire ucharitannique	Pélagiques d'éct	nan-	Parc National Albert
Eucyclops serrulatus (FISCHER) 33, Eucyclops cf. sublævis (SARS) 50' Eucyclops euacanthus (SARS) 26 Eucyclops semiserratus (SARS) 15, Eucyclops lævimargo (SARS) 33, Eucyclops rarispinus (SARS) 55,	5, 130, 506, 507. 17. 160. 16, 58, 138. 17. 18. 19. 19. 19. 19. 19. 19. 19. 19	1 1 1 1 1	Bords,		+	Pélagiques	Bords,	Parc Nat
Eucyclops serrulatus (FISCHER) 33, Eucyclops cf. sublævis (SARS) 50' Eucyclops euacanthus (SARS) 26' Eucyclops semiserratus (SARS) 15, Eucyclops lævimargo (SARS) 33, Eucyclops rarispinus (SARS) 55,	5, 130, 506, 507. 17. 160. 16, 58, 138. 17. 18. 19. 19. 19. 19. 19. 19. 19. 19	-	2 - 1		100	1 1		-
Eucyclops serrulatus (FISCHER) 33, Eucyclops cf. sublævis (SARS) 50' Eucyclops euacanthus (SARS) 26' Eucyclops semiserratus (SARS) 15, Eucyclops lævimargo (SARS) 33, Eucyclops rarispinus (SARS) 55,	5, 130, 506, 507. 17. 160. 16, 58, 138. 17. 18. 19. 19. 19. 19. 19. 19. 19. 19	-	2 - 1	-	100	-		
Eucyclops cf. sublævis (SARS) 50° Eucyclops euacanthus (SARS) 26° Eucyclops semiserratus (SARS) 15° Eucyclops lævimargo (SARS) 33° Eucyclops rarispinus (SARS) 55°	77. 50. 5, 58, 138. 5, 41, 77, 126.	-	1	=				
Eucyclops euacanthus (SARS) 260 Eucyclops semiserratus (SARS) 15 Eucyclops lævimargo (SARS) 33 Eucyclops rarispinus (SARS) 55	50. 5, 58, 138. 5, 41, 77, 126.	-		(C = 1		-	2	_
Eucyclops semiserratus (SARS) 15 Eucyclops lævimargo (SARS) 33 Eucyclops rarispinus (SARS) 55	5, 58, 138. 5, 41, 77, 126.	-			+			
Eucyclops lævimargo (SARS)	41, 77, 126.	-	3	+	+	_		
Eucyclops rarispinus (SARS) 55,	AL STANDARD		3		133		· _	
	, 00.	1	1	+	+	_	_	
Everelone agnasti on nov	A. 10.00	1	1		+	_		
	, 60.	250	2	+	+		_	
	3. 99, 506, 507, Albertville 3. XI.1946).	=	3	+	+ +	_	2	-
Market I Block to the Control of the	7, 535.		-	_	_	_	1	
	8, 156, 283, 502, 506, 507, 516.	_	2	+	+	1	5	-
The property of the state of th	5, 351 ^{bis} .	2	_	+		_	_	
Paracyclops affinis (SARS)	and the same of th			-	_	_	1	-
	50, 383, 506.	_	2	+	+	_	1	-
	53, 507.	_	1	+	1 -	<u>a_</u> e	1	-
Megacyclops viridis (JURINE) 29		1		+	_	_	_	-
	3, 130, 518, 535, Marais Kalumbé.	-	3	+	+	_	1	
Microcyclops davidi (CHAPPUIS)		_	1	_	+	_		
Microcyclops jenkinæ (LOWNDES)		_	1	+	_	_	_	
		2	3	+	+	_	_	
	5, 32, 33, 49, 138.	_	2	+	+		1	
	3, 507, 535, Marais Kalumbé.	1	150	T				
Cryptocyclops attenuatus (SARS)		1	2	-	+	-	- 50	
Mesocyclops leuckarti (CLAUS)	3, 60. 3, 4, 7, 13, 15, 20, 21, 24, 25, 0, 32, 33, 38, 41, 45, 49, 53, 54, 8, 62, 68, 75, 77, 84, 87, 105, 111, 11, 126, 130, 131, 138, 141, 152, 66, 178, 234, 255, 258, 260, 271, 83, 289, 298, 300, 302, 305, 351bis, 33, 289, 298, 300, 302, 305, 351bis, 33, Marais Kalumbé, 502, 505, 06, 507, 509, 516, 520.	37	16	+	+	10	8	
And the second s	Iarais Kalumbé.	-	3	+	_	-	_	
	8, 62, 99, 126.	1	4	+	+	_	_	
	farais Kalumbé.	_	3	+	_	1222		-
	83, 502, 506, 520.	_	_	720	_	1	4	1
	3, 24, 54, 58, 105, 234, 258, 302.	7	1	+	+		200	1
	09.	100		1			5	
	35.		12(15)	1 1 1 1 1 1	125-32	5,590		

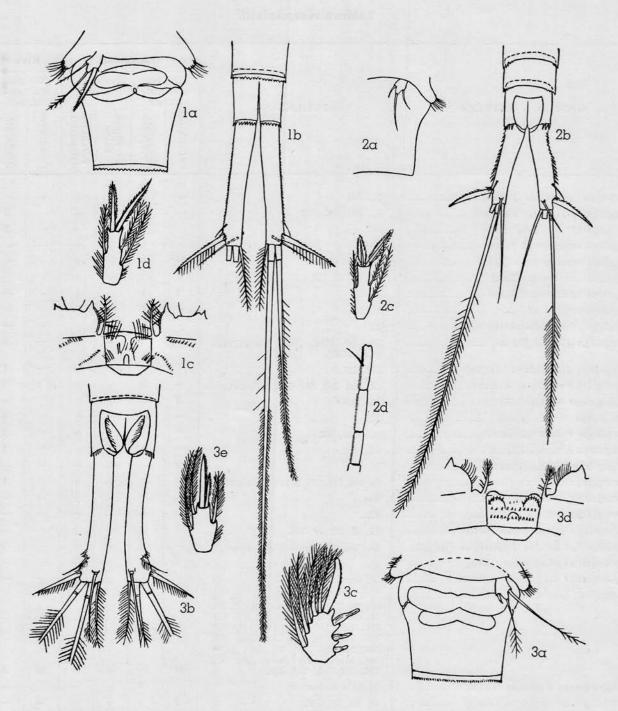


FIG. 1. — Eucyclops cf. sublavis (SARS), Q. — a) P 5 et segment génital; b) Furca, face ventrale; c) Lamelle basilaire de P 4; d) Art. 3 de l'enp. P 4.

FIG. 2. — Eucyclops euacanthus (SARS), Q. — a) P 5; b) Furca, face dorsale; c) Art. 3 de l'enp. P 4; d) A 1, trois derniers articles.

Fig. 3. — Eucyclops lævimargo (SARS), Q. — a) P 5 et segment génital; b) Furca, face dorsale; c) Art. 3 de l'exp. P 2; d) Lamelle basilaire de P 4; e) Art. 3 de l'exp. P 4.

REMARQUES SUR LES ESPÈCES DÉTERMINÉES.

1. — Macrocyclops albidus (Jurine, 1820).

Les exemplaires examinés ne diffèrent pas de ceux d'autres parties du monde. La femelle de la station 33 possède la soie distale du rebord interne de l'article 3 de l'enp. P 4; chez le mâle de la station 260, par contre, cette soie fait défaut.

2. — Eucyclops serrulatus (Fischer, 1851).

De cette espèce, très variable, quelques femelles et mâles présentent les caractéristiques d'*E. serrulatus* typique, d'autres celles d'*E. agiloides*, forme à laquelle on ne peut pas, à mon avis, donner une valeur spécifique.

3. — Eucyclops cf. sublævis (Sars, 1927). (Fig. 1.)

Dans deux échantillons de la station 507 (lac Kivu) il y avait des femelles ovigères, mesurant de 950 à 1073 µ, à très longue furca (6,85 : 1 à 7,50 : 1), à branches peu divergentes, munies d'une serra composée de denticules très petits et serrés; les trois derniers articles de A1 sont pourvus d'une membrane hyaline striée, relativement large; la plupart des épines des exopodites ont une structure lancéolée, les soies apicales des exp. P 3 et P 4 spiniformes; l'épine de P 5 très forte et longue, les ovisacs sont de forme elliptique très allongée.

J'ai pensé d'abord qu'il s'agissait d'E. serrulatus speratus (Lill.) atypiques, mais une comparaison avec la description et les figures de Sars (1927) de son Leptocyclops sublævis provenant de la colonie du Cap, a révélé une similitude encore plus grande avec cette espèce.

Selon Sars la serra de la furca ferait défaut dans la plupart des cas, mais il a aussi observé une femelle présentant une courte serra et en a donné une figure (pl. 12, fig. 10). Une seconde différence existe au niveau de l'article terminal de l'enp. P 4 que Sars a représenté comme étant très allongé et à épine apicale interne plus courte que l'article.

En 1934, Kiefer a décrit sous le nom de *E. sublævis* (Sars) des exemplaires de la Rhodésic du Sud et de l'Union sud-africaine qui sont encore plus proches de ceux du Congo belge; ils possèdent une serra bien développée et un article terminal de l'enp. P 4 bien moins allongé que celui figuré par Sars. Quant à l'épine apicale interne de cet article elle est moins longue que l'article chez trois femelles, aussi longue que lui chez une, et plus longue chez deux. Malgré les différences observées, Kiefer n'a pas hésité à identifier ses spécimens avec ceux de Sars.

4. — Eucyclops euacanthus (SARS, 1909).

Les femelles examinées, dont la longueur variait de 760 à 798 µ, répondaient bien à la description originale de Sars, dont les deux spécimens provenaient de la rivière Lofu, à l'extrémité sud du lac Tanganika.

5. — Eucyclops semiserratus (SARS, 1909).

Les spécimens de Sars ont été pêchés dans l'île Niamkolo (extrémité sud du lac) et les récoltes de la Mission belge montrent qu'il s'agit d'une espèce très répandue des bords du lac ou de petites mares proches de celui-ci.

L'espèce est facilement reconnaissable par sa longue furca, à serra d'extension limitée, à la courbure en dehors de la moitié distale de la soie apicale médiane interne (caractère déjà noté par Sars), à la membrane hyaline denticulée au niveau des derniers articles de A1, aux fortes apophyses entre les épines de l'article 3 de l'exp. P 2 (les épines aussi sont grosses et plus ou moins obtuses), à l'épine de P 5 extrêmement courte et la soie de P 6 chez la femelle très longue. Au sujet de la serra, j'ai noté qu'elle ne s'étend que sur une partie de la moitié ou des deux tiers distaux du rebord externe de la furca. Elle est composée de 10 à 22 denticules, plus grands distalement que proximalement, souvent disposés en deux groupes séparés par un petit espace libre; les denticules du groupe distal sont généralement plus longs et plus serrés, tandis que ceux du groupe proximal sont plus petits et plus espacés.

Sars n'avait pas décrit le mâle. Je donne pages 80 et 81 les mensurations d'un mâle de la station 58.

6. — Eucyclops lævimargo (Sars, 1909). (Fig. 3.)

Espèce récoltée sur les deux rives lu lac Tanganika, ressemblant beaucoup à la précédente et possédant comme elle une très courte épine de P 5. Le principal caractère différentiel se trouve dans l'absence de la serra, celle-ci étant remplacée par 3 ou 4 denticules placés un peu au-dessus et en dehors de l'insertion de la soie latérale. Parmi les exemplaires examinés il n'y avait aucun mâle.

7. — Eucyclops rarispinus (SARS, 1909). (Fig. 5.)

SARS n'avait vu qu'une seule femelle de cette espèce. Selon R. Gurney (1928), qui ne donne cependant aucun détail sur ses spécimens, c'était « l'espèce la plus commune dans les collections de M. Pask » du lac Tanganika. La Mission belge en a récolté un petit nombre dans un étang de la rive droite de ce lac.

Un petit tube portant le numéro de la station 88 renfermait un cyclopide unique endommagé et fixé à la solution de Bouin qui paraissait également appar-

tenir à cette espèce. La fragilité du spécimen due à une telle fixation m'a empêché de l'examiner en vue d'une détermination exacte.

Les spécimens examinés provenant de la station 58 s'identifient à la description de Sars, mais je n'ai pas aperçu de poils sur la moitié proximale du rebord

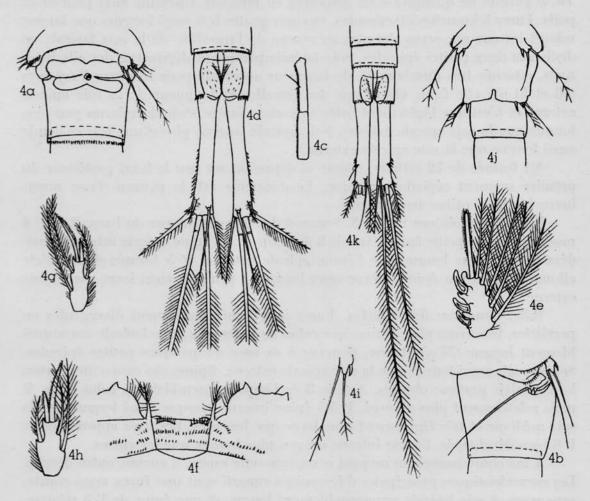


Fig. 4. — Eucyclops semiserratus (SARS), Q. — a) P5 et segment génital (15); b) P5 et P6 (15); c) A1, deux derniers articles (15); d) Furca, face dorsale (15); e) Art. 3 de l'exp. P2 (138); f) Lamelle basilaire de P4 (138); g) Art. 3 de l'enp. P4 (15); h) Même (138); i) P5 (138). S. — j) P5 et P6 (58); k) Furca, face dorsale (58).

interne de la furca. Les derniers articles de A 1 portent une membrane hyaline très étroite, à fins et nombreux denticules, très distincts surtout sur la moitié proximale du douzième article. P 5 à article de forme allongée pourvu d'une épine svelte et de deux soies un peu plus longues.

8. — Eucyclops caparti sp, nov. (Fig. 7.)

Espèce de dimensions modérées. Deux femelles mesurées. Ailes latérales de Th. 5 garnies de quelques soies disposées en faisceau. Opercule anal pourvu de poils. Furca à branches divergentes, environ quatre fois aussi longues que larges; rebord interne nu; serra absente; au niveau de l'insertion de la soie latérale on distingue deux petites épinules. Soie latérale paraissant dépourvue des cils habituels, attachée très distalement, de longueur anormale pour le genre Eucyclops (60 et 61 μ); elle égale chez l'une des femelles la longueur de la soie apicale externe et n'est que légèrement inférieure chez l'autre. Soie dorsale un peu plus longue que la soie apicale externe. Soie apicale interne plus d'une fois et demie aussi longue que la soie apicale externe.

A1 formée de 12 articles, courte et dépassant un peu le bord postérieur du premier segment céphalothoracique. Le douzième article pourvu d'une membrane hyaline entière assez large.

Formule des épines : 3-4-4-3. Sommet de l'élevure interne du basp. 2 de P 4 muni d'une très petite épine. Article 3 de l'enp. P 4 à épine apicale interne considérablement plus longue que l'épine apicale externe. P 5 formée d'un article allongé portant une épine interne assez longue, à peu près aussi large que la soie externe.

Mâle. Longueur 589 à 684 μ . Furca à branches légèrement divergentes ou parallèles, beaucoup plus courtes que celles de la femelle. Soie latérale remarquablement longue (37 μ) et nue, pourvue à sa base de quelques petites épinules. Soie dorsale aussi longue que la soie apicale externe. Épines des exopodites fortes, à extrémités presque obtuses. Article 3 de l'enp. P 4 semblable à celui de la $\mathcal P$ mais relativement plus allongé. P 5 à épine interne presque aussi longue que la soie médiane et très légèrement plus large que les soies. Les trois appendices de P 6 bien développés, l'épine interne un peu plus longue que les autres.

A ma connaissance on ne peut comparer cette espèce à aucune autre décrite. Les caractéristiques principales d'*Eucyclops caparti* sont une furca assez courte, sans serra, à soie latérale remarquablement longue et une épine de P 5 relativement très longue et mince. Je me fais un plaisir de dédier ce joli *Eucyclops* à M. A. CAPART, qui l'a découvert.

Syntypes... déposés dans les collections I.R.S.N.B.

Localités: T. 15. Baie de Tembwe; T. 60. Kigoma, Bassin du Slip, 10.I.1947.

9. — Eucyclops paucidenticulatus sp. nov. (Fig. 6.)

Femelle un peu plus petite que celle de l'espèce précédente. Ailes latérales de Th. 5 pourvues de soies disposées comme chez celle-ci. Opercule anal garni de poils. Furca à branches divergentes, un peu plus courtes que chez *E. caparti*. Serra très réduite, composée seulement de 6 à 8 denticules. Soie latérale paraissant glabre, remarquablement longue (53 μ), égalant en longueur celle de la soie

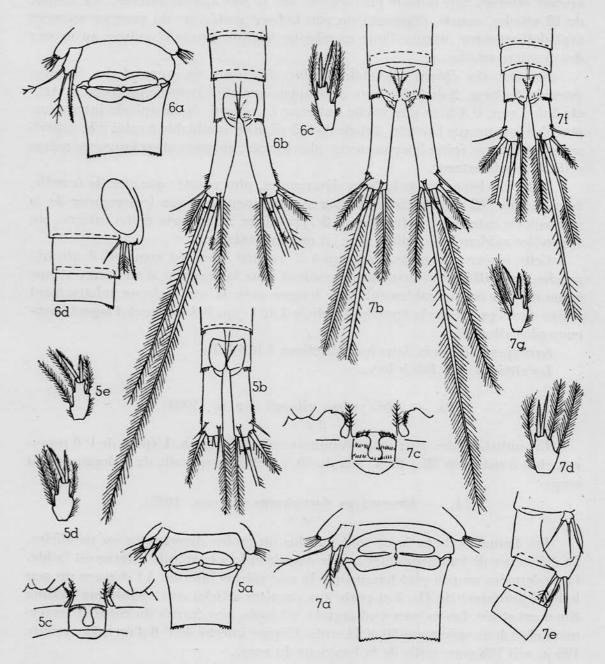


Fig. 5. — Eucyclops rarispinus (SARS), Q. — a) P 5 et segment génital; b) Furca, face dorsale; c) Lamelle basilaire de P 4; d) Art. 3 de l'enp. P 4; e) Idem (autre exemplaire).

Fig. 6. — Eucyclops paucidenticulatus sp. nov. — a) Q, P 5 et segment génital; b) Q, furca, face dorsale; c) Q, art. 3 de l'enp. P 4; d) Q, P 6.

Fig. 7. — Eucyclops caparti sp. nov., Q. — a) P 5 et segment génital; b) Furca, face dorsale; c) Lamelle basilaire de P 4; d) Art. 3 de l'enp. P 4. O. — e) P 5 et P 6; f) Furca, face dorsale; g) Art. 3 de l'enp. P 4.

apicale externe. Soie dorsale plus longue que la soie apicale externe. A1 formée de 12 articles, courte, dépassant un peu le bord postérieur du premier segment céphalothoracique, munie d'une membrane hyaline étroite et entière au niveau des derniers articles.

Formule des épines : 3-4-4-3. L'épine chitineuse du sommet des élevures internes du basp. 2 de P 4 mieux développée que chez l'espèce précédente. Article 3 de l'enp. P 4 bien plus svelte que chez E. caparti; épine apicale interne un peu plus longue que l'article. Article de P 5 allongé, semblable à celui d'E. caparti mais armé d'une épine interne encore plus longue, surpassant en longueur même celle de la soie externe.

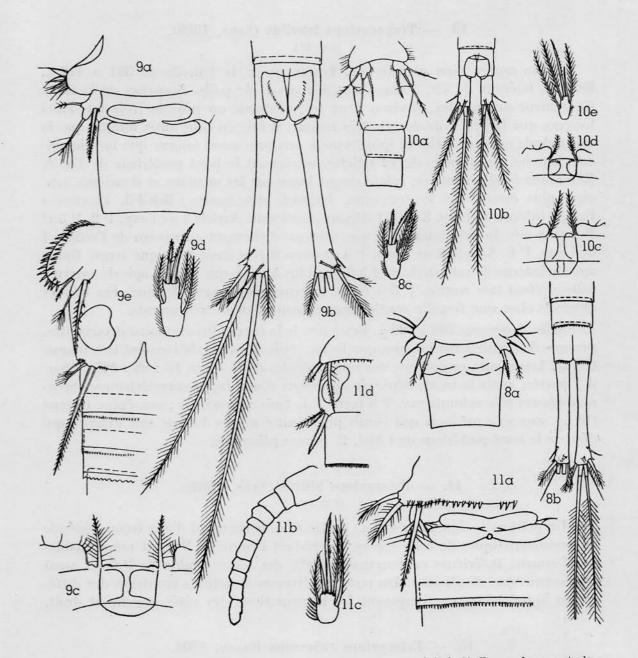
Mâle. Les branches de la furca divergentes, plus courtes que chez la femelle. Soie latérale $(42\,\mu)$ relativement longue, atteignant presque la longueur de la soie apicale externe. P 6 formée de 3 appendices : une forte épine interne, un appendice médian cilié, spiniforme, et une soie externe.

Cette espèce ressemble beaucoup à *E. caparti* et en est sans nul doute très proche. Les différences principales résident dans la présence d'une serra et une épine de P 5 considérablement plus longue avec la soie externe relativement moins développée chez la femelle. L'article 3 de l'enp. P 4 est aussi d'aspect beaucoup plus allongé.

Syntypes... déposés dans les collections I.R.S.N.B.

Localité: T. 33, Edith Bay.

10. — Afrocyclops gibsoni (Brady, 1904). (Fig. 8.)


Les individus des deux sexes examinés étaient typiques. L'épine de P 6 mesurait chez 3 mâles de 59 à 67 μ , soit de 70,5 à 82,7 pour mille de la longueur du corps.

11. — Afrocyclops doryphorus (Kiefer, 1935).

Les branches de la furca sont ici plus ou moins divergentes ou parallèles. La différence de longueur entre la soie dorsale et la soie apicale externe est faible. Cette dernière un peu plus longue que la soie apicale interne. A 1 dépasse un peu le bord postérieur de Th. 1 et porte aux derniers articles une membrane hyaline finement striée. Les ovisacs sont grands, allongés, peu écartés du corps et renferment chez deux spécimens 20 et 24 œufs. L'épine interne de P 6 d'un mâle mesure 125 µ, soit 103 pour mille de la longueur du corps.

12. — Tropocyclops confinis (Kiefer, 1930). (Fig. 10.)

Les exemplaires examinés ne diffèrent pas d'une façon appréciable de ceux d'autres régions. La formule des épines est chez tous 3-4-3-3, la soie manque au niveau de l'élevure interne du basp. 2 de P 1, la soie apicale interne de la furca est un peu moins longue que la soie apicale externe. La membrane hyaline au niveau des trois derniers articles de A1 est finement striée; chez un exemplaire elle paraissait entière.

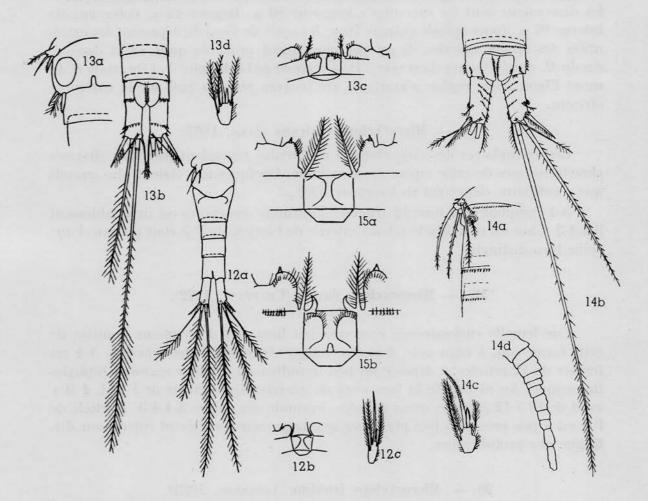
- FIG. 8. Afrocyclops Gibsoni (BRADY), φ. a) P 5 et segment génital; b) Furca, face ventrale; c) Art. 3 de l'enp. P 4.
- FIG. 9. Afrocyclops doryphorus (KIEFER), Q. a: P 5 et segment génital; b) Furca, face dorsale; c) Lamelle basilaire de P 4; d) Art. 3 de l'enp. P 4. O. e) P 5 et P 6.
- Fig. 10. Tropocyclops confinis (Kiefer), Q. a) P 5; b) Furca, face dorsale; c) Lamelle basilaire de P 1; d) Lamelle basilaire de P 4; e) Art. 3 de l'enp. P 4.
- Fig. 11. Ectocyclops rubescens Brady, Q. a) P 5 et segment génital; b) A 1; c) Art. 3 de l'enp. P 4. σ (. d) P 5 et P 6.

13. — Tropocyclops tenellus (SARS, 1909). (Fig. 12.)

Petite espèce bien caractérisée. Longueur de la femelle de 361 à 412 μ. Rebords latéraux de Th. 5 paraissant dépourvus de poils. Branches de la furca légèrement divergentes, environ deux fois et demie ou près de trois fois aussi longues que larges. Soie dorsale très longue, 4 fois ou plus aussi longue que la soie apicale externe. Celle-ci spiniforme à peu près aussi longue que la soie apicale interne. A1 formée de 12 articles, atteignant le bord postérieur de Th. 4. Membrane hyaline entière, relativement large sur les onzième et douzième articles, plus étroite sur le deuxième. Formule des épines : 3-4-3-3. Élevure à l'angle interne du basp. 3 de P1 dépourvue de soie. Article 1 de l'exp. P2, P3 et P4 sans soie du côté interne; la soie manque également au niveau de l'article 1 de l'enp. P4. Article 3 de l'enp. P4 environ 3 fois aussi long que large. Épine apicale interne de cet article de 4 à 6 fois plus longue que l'épine apicale externe, celle-ci étant très courte. P5 à épine interne relativement longue. Les ovisacs observés chez une femelle contiennent chacun 2 œufs très grands.

Mâle. Longueur 350 à 360 μ . Branches de la furca plus ou moins divergentes, presque deux fois aussi longues que larges. Soie dorsale relativement très longue (78 μ). Longueurs respectives des soies apicales de la furca 18:83:167:18 μ . A 1 portée, après la mort, déployée au dehors d'une façon caractéristique. Spermatophores très volumineux. P 6 formée de trois appendices : une épine interne (18 μ), une soie médiane qui paraît plus courte et une longue soie externe qui dépasse le bord postérieur de l'Abd. 2. Forme pélagique.

14. — Paracyclops affinis (SARS, 1863). (Fig. 13.)


Un petit mâle (longueur 490 μ) du lac Kivu correspond d'une façon générale aux caractéristiques de cette espèce; cependant l'épine de P 5 est remarquablement courte, inférieure en longueur à celle des soies; l'épine de P 6 est aussi plus courte que d'ordinaire. Du reste les diverses structures montrent des différences appréciables en comparant les mensurations des côtés gauche et droit.

15. — Ectocyclops rubescens Brady, 1904. (Fig. 11.)

Les individus examinés correspondent à la forme *E. rubescens* telle qu'elle a été définie par Kiefer. La première antenne compte 11 articles. Dans les deux sexes l'appendice interne de P 5 est considérablement plus long que les deux autres appendices.

16. — Ectocyclops hirsutus Kiefer, 1930. (Fig. 14.)

D'après les échantillons de la station 253 la femelle de cette forme se reconnaît par les trois caractères principaux suivants : une furca plus de deux fois aussi longue que large, une soie dorsale de beaucoup plus longue que la soie apicale

- Fig. 12. Tropocyclops tenellus (SARS), Q. a) P 5 et abdomen, face ventrale; b) Lamelle basilaire de P 4; c) Art. 3 de l'enp. P 4.
- FIG. 13. Paracyclops affinis (SARS), of. a) P 5 et P 6; b) Furca, face dorsale; c) Lamelle basilaire de P 4; d) Art. 3 de l'enp. P 4.
- FIG. 14. Ectocyclops hirsutus KIEFER, Q. a) P 5; b) Furca, face dorsale; c) Art. 3 de l'enp. P 4; d) A 1.
- Fig. 15. Mesocyclops leuckarti (CLAUS), Q.-a) Lamelle basilaire de P4 (87); b) Même (marais Kalumbé).

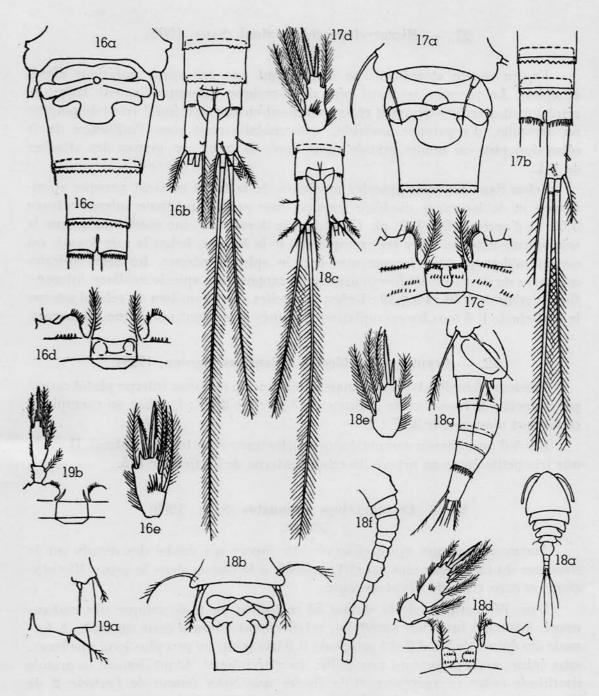
externe, des appendices de P 5 très longs et montrant peu de différences de longueur entre eux (du dedans au dehors $117:107:105~\mu$). A 1 est formée de 11 articles.

17. — Megacyclops viridis (Jurine, 1820).

Un échantillon pélagique du lac Tanganika renfermait deux femelles immatures de M. viridis, l'une longue de 1653 μ avec une furca à branches parallèles, dont le rapport, la longueur et la largeur est 192 : 40 μ. La soie apicale externe mesure 100 μ, la soie apicale interne 242 μ. Au niveau de l'article 3 de l'enp. P 4 les dimensions sont les suivantes : longueur 80 μ, largeur 45 μ, épine apicale interne 97 μ, épine apicale externe 70 μ; les soies de l'article dépassent les extrémités des épines apicales. Il est par conséquent probable qu'il s'agit dans ce cas du M. viridis latipes (Lowndes). Déjà connue de l'Éthiopie, de l'Ouganda et du mont Elgon, cette espèce n'avait pas été trouvée plus au Sud sur le continent africain.

18. — Microcyclops varicans (SARS, 1863).

Les exemplaires des cinq stations différentes répondent bien aux diverses caractéristiques de cette espèce assez variable. Quelques-uns étaient plus grands que d'ordinaire, dépassant en longueur $1000~\mu$.


A 1 comptait chez tous 12 articles; la formule des épines est invariablement 3-4-4-3. Chez un individu le rebord interne de l'article de P 5 était pourvu d'une épine bien distincte.

19. — Microcyclops davidi (Chappuis, 1922).

Une femelle endommagée correspondait bien aux descriptions données de cette forme qui, à mon avis, doit être rangée dans le groupe *rubellus*. A 1 est formée de 12 articles et dépasse un peu le milieu du premier segment céphalothoracique. Au niveau de la face ventrale du rebord postérieur de l'Abd. 4 il y avait de 10 à 12 épinules assez grandes. Formule des épines 3-4-4-3. L'article de P 5 est à peu près 3,25 fois plus long que large; sur son rebord interne on distingue une protubérance.

20. — Microcyclops jenkinæ (Lowndes, 1933). (Fig. 17.)

Une femelle unique, très endommagée, doit apparemment être référée à cette espèce déjà décrite, aussi par Kiefer (M. triumvirorum), de l'Afrique orientale. A 1 compte 12 articles et dépasse un peu le milieu du premier segment céphalothoracique. Le rebord postérieur de l'Abd. 4 est garni sur la face ventrale d'environ 10 à 12 longues épinules. Formule des épines 3-4-4-3. L'article de P 5 est presque deux fois et demie aussi long que large; il présente un petit tubercule situé vers le milieu du rebord interne.

- Fig. 16. Microcyclops davidi (Chappuis), Q. a) P5 et segment génital; b) Furca, face dorsale; c) Segment anal, face ventrale; d) Lamelle basilaire de P4; e) Art. 2 de l'enp. P4.
- Fig. 17. $Microcyclops\ jenkinx$ (Lowndes), Q. a_i P 5 et segment génital; b_i) Furca, face ventrale; c_i) Lamelle basilaire de P 4; d_i) Art. 2 de l'enp. P 4.
- FIG. 18. *Microcyclops cunningtoni* (SARS), Q. a) Configuration générale; b) P 5 et segment génital; c) Furca, face dorsale; d) Enp. P 4; e) Art. 2 de l'enp. P 4 (autre exemplaire); f) A 1. σ . g) P 5 et abdomen.
- Fig. 19. Cryptocyclops attenuatus (SARS), σ . a) P 5 et P 6; b) Enp. P 4.

21. — Microcyclops cunningtoni (Sars, 1909).

(Fig. 18.)

Espèce courte et robuste, se distinguant par son corps antérieur élargi et aplati. Le premier segment céphalothoracique remarquablement large, se rétrécissant d'arrière en avant et se terminant en une extrémité frontale pointue ou arrondie, d'apparence variable, vraisemblablement sous l'influence de la rétraction plus ou moins grande subie après la mort, au niveau des attaches de A 1.

Selon Sars les soies apicales médianes de la furca seraient presque spiniformes et de longueur modérée (rapport soie apicale médiane interne : furca 3,66 : 1 d'après la fig. 150, pl. 17) et la soie dorsale à peine aussi longue que la soie apicale externe. Chez les exemplaires de la Mission belge la soie dorsale est considérablement plus longue que la soie apicale externe, les soies apicales médianes de structure sétiforme usuelle; le rapport soie apicale médiane interne : furca variait de 5,70 : 1 à 6,39 : 1 chez 6 femelles. Vers le milieu du rebord interne le l'article de P 5 tous les exemplaires examinés présentent une épine minuscule.

22. — Cryptocyclops bicolor linjanticus (Kiefer, 1928).

Plusieurs femelles typiques, mais à soie apicale médiane interne plutôt courte par rapport à la longueur de la furca (de 3,48:1 à 3,70:1); chez un exemplaire ce rapport n'est que de 3,27:1.

L'A 1 d'un individu compte douze articles (onze chez tous les autres). Il existe une très petite épine au niveau du rebord interne de l'article de P 5.

23. — Cryptocyclops attenuatus (SARS, 1909). (Fig. 19.)

Aucun des auteurs ayant observé cette espèce n'a donné des détails sur la structure du réceptacle séminal et l'on hésite à la classer dans le genre *Microcyclops* ou dans celui de *Cryptocyclops*.

Dans l'échantillon de la station 54 se trouve un mâle unique très endommagé, à furca à branches parallèles, relativement longues pour un mâle, à formule des épines de 3-4-4-3 et à article de P 5 très petit, un peu plus long que large, sans épine, mais présentant une saillie du côté interne. Étant donnée la grande similitude entre ce spécimen et la figure que Sars donne de l'article 2 de l'enp. P 4, tout aussi bien dans les proportions de l'article lui-même que dans ses appendices, je crois très probable que ce mâle se réfère à l'espèce C. attenuatus dont Sars avait omis de décrire le mâle. Au niveau de P 6 je n'ai distingué que deux appendices; une courte mais forte épine interne et une longue soie externe ciliée.

24. — Cryptocyclops tanganicæ (Gurney, 1928).

Dans la description originale de cette espèce bien définie les caractéristiques principales ont déjà été données par R. Gurney. Ce qui nous frappe surtout, c'est la structure de l'article 2 de l'enp. P 4 qui est de forme très trapue, presque arrondie. Il est difficile de comprendre pourquoi Gurney (1928, p. 322) a rapproché cette espèce de M. attenuatus (Sars): « Ces deux espèces (M. tanganicæ et M. gemellus) et M. attenuatus se ressemblent à un tel point qu'il a été très difficile de décider s'il faut les traiter comme des formes d'une espèce variable ou comme trois espèces ». Comme je l'ai déjà dit, le C. attenuatus se caractérise par la grande sveltesse de l'article 2 de l'enp. P 4, particularité clairement indiquée par Sars (1909, pl. 16, fig. 136).

La configuration du réceptacle séminal montre que le M. tanganyicæ doit être rangé dans le genre Cryptocyclops. Il en est très probablement de même pour le M. gemellus Gurney.

Voici quelques détails concernant le mâle que Gurney n'avait pas décrit : Longueur 480 à 494 μ . Furca à branches presque parallèles, considérablement plus courtes que celles de la femelle. Article de P 5 pourvu d'une épine, comme chez la femelle, mais relativement plus courte. P 6 formée d'une petite épine interne de 10 à 11 μ et d'une soie externe assez longue (28 μ); je n'ai pas distingué d'appendice médian.

25. — Mesocyclops leuckarti (Claus, 1857). (Fig. 15.)

Il y existe certaines différences morphologiques entre les exemplaires provenant du lac Tanganika et ceux récoltés dans les mares et étangs des environs; les premiers sont en général plus petits, plus sveltes, à A 1, articles des pattes et leurs appendices plus allongés, les proéminences dentiformes de la lamelle basilaire de P 4 peu développées ou même imperceptibles (fig. 20, a), les œufs des ovisacs peu nombreux. Ces modifications semblent être, du moins en partie, inhérentes à la vie pélagique dans un grand lac.

Les autres individus sont plus grands, plus robustes et chez eux j'ai observé un grand développement des proéminences de la lamelle basilaire de P 4 (fig. 20, b).

26. — Thermocyclops hyalinus (Rehberg, 1880).

F. Kiefer avait en 1927 (Faune Colonies françaises, I, fasc. 6, p. 567) signalé la présence de cette espèce à Stanleyville (Congo belge). Cependant ce sont apparemment ces mêmes exemplaires qui ont servi plus tard à Kiefer pour établir son espèce nouvelle *Thermocyclops decipens*, puisque c'est justement Stanleyville qui est donné comme lieu de provenance, et Kiefer a plus tard affirmé ne pas

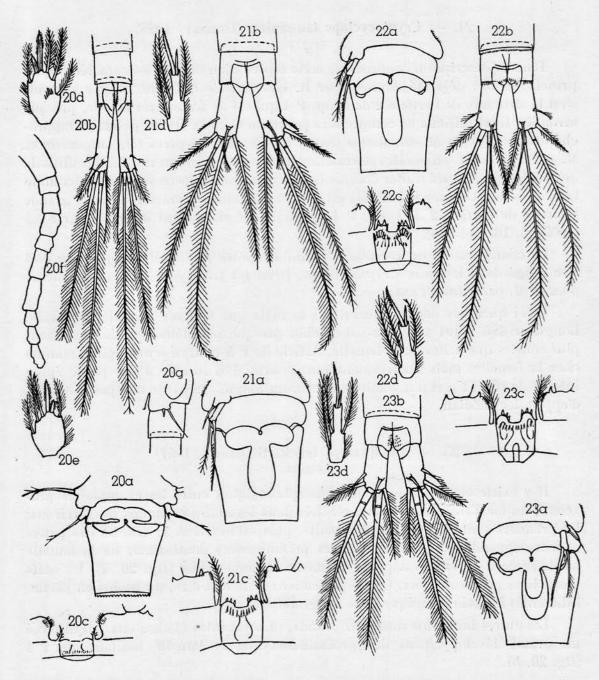


FIG. 20. — Cryptocyclops tanganica (GURNEY), Q. — a) P 5 et segment génital; b) Furca, face dorsale; c) Lamelle basilaire de P 4; d) Art. 2 de l'enp. P 4; e) Même (autre exemplaire); f) A 1. \mathcal{O} . — g) P 6.

- Fig. 21. Thermocyclops hyalinus (Rehberg), Q. a) P 5 et segment génital; b) Furca, face dorsale; c) Lamelle basilaire de P 4; d) Art. 3 de l'enp. P 4.
- FIG. 22. Thermocyclops neglectus (SARS), Q. a_i P 5 et segment génital; b) Furca, face dorsale; c) Lamelle basilaire de P 4; d) Art. 3 de l'enp. P 4.
- FIG. 23. Thermocyclops pachysetosus sp. nov., Q. a) P5 et segment génital; b) Furca, face dorsale; c) Lamelle basilaire de P4; d) Art. 3 de l'enp. P4.

connaître l'existence du *Th. hyalinus* sur le continent africain, à part l'Afrique du Nord, où il a indiqué sa présence comme probable (F. Kiefer, 1939, *Int. Revue Hydrob.*, p. 60, et carte, p. 61).

Un Thermocyclops qui sans doute doit être référé à l'espèce de Rehberg ne fut rapporté que d'une seule station. Les exemplaires présentent une particularité que je n'avais pas encore observée chez cette espèce : de très courts poils garnissent une partie du rebord latéral de Th. 5.

A côté d'individus à réceptacle séminal typique il y en a dont les bras latéraux sont plus minces, plus allongés et légèrement recourbés.

27. — Thermocyclops pachysetosus sp. nov. (Fig. 23.)

Dans les échantillons renfermant le *Th. hyalinus* (Rehberg) se trouvaient aussi des exemplaires qui en différaient notablement par la brièveté des soies apicales médianes de la furca et leur épaisseur dans leurs parties proximales; chez ces individus la soie apicale interne est aussi plus courte par rapport à la soie apicale externe que chez *Th. hyalinus*; il en est de même pour les branches de la furca. Le réceptacle séminal présente l'aspect typique de celui de *Th. hyalinus*.

Longueur de la femelle de 845 à 969 µ. Bords latéraux de Th. 5 garnis de quelques courts poils. Branches de la furca divergentes, de 1,74 à 2 fois aussi longues que larges. Soie latérale relativement longue, plus ou moins arquée, insérée bien en arrière du milieu du rebord externe de la furca. Soie dorsale plutôt courte, égalant à peu près en longueur celle de la soie apicale externe. Soie apicale interne environ une fois et demie aussi longue que la soie apicale externe (moyenne 1,46 : 1 chez 5 femelles). A 1 formée de dix-sept articles; rabattue elle atteint le tiers postérieur de Th. 2 ou le bord postérieur de ce segment. Article 3 de l'enp. P 4 de deux et demie à environ trois fois aussi long que large; des deux épines apicales, l'interne est en général plus de deux fois aussi longue que l'externe (moyenne 2,12 : 1); l'épine apicale interne un peu plus courte que l'article. Soies des rebords internes et externes de l'article 3 de l'enp. P 4 longues, mais n'atteignant pas l'extrémité de l'épine apicale interne. Lamelle basilaire de P 4 présentant de chaque côté une élevure arrondie assez grande, armée de 3 à 4 fortes épinules. P 5 à soie de l'article basilaire courte; article 2 relativement allongé, à épine légèrement plus longue que la soie apicale. Ovisacs grands, pouvant dépasser l'extrémité de la furca, écartés du corps et renfermant chacun de 12 à 16 œufs. Mâle inconnu.

Type : 1 ♀ conservée dans les collections I.R.S.N.B. Localité : Marais Kalumbé-Albertville, 25.XI.1946.

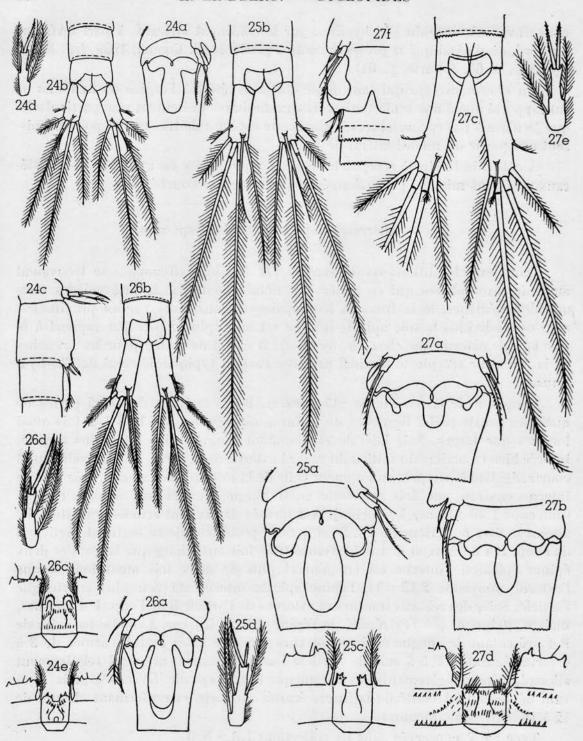


FIG. 24. — Thermocyclops consimilis (KIEFER), Q = a) P 5 et segment génital; b) Furca, face dorsale; c) P 5 et P 6; d) Art. 3 de l'enp. P 4. G = a) Lamelle basilaire de P 4. FIG. 25. — Thermocyclops Schuurmanæ (KIEFER), Q = a) P 5 et segment génital; b) Furca, face dorsale; c) Lamelle basilaire de P 4; d) Art. 3 de l'enp. P 4.

FIG. 26. — Thermocyclops retroversus (KIEFER), Q. — a) P5 et segment génital; b) Furca, face dorsale; c) Lamelle basilaire de P4; d) Art. 3 de l'enp. P4.

FIG. 27. — Thermocyclops schmeili (POPPE et MRÁZEK), Q. — a) P5 et segment génital; b) Même (autre exemplaire); c) Furca, face dorsale; d) Lamelle basilaire de P4; e) Art. 3 de l'enp. P4. J. — f) P5 et P6.

28. — Thermocyclops consimilis (Kiefer, 1934).

De même que pour l'espèce précédente il s'agit aussi ici d'une forme très proche de Th. hyalinus. Elle s'en différencie principalement par sa petite taille, par la soie apicale interne de la furca relativement plus courte par rapport à la longueur de la soie apicale externe et par la soie dorsale surpassant un peu en longueur celle de la soie apicale externe. Chez une femelle les ovisacs ne renfermaient qu'un seul œuf, très grand $(83:70~\mu;$ longueur totale $670~\mu)$, chez une autre ils étaient appliqués contre l'abdomen et contenaient 4 et 5 œufs plus petits.

Un seul mâle examiné possède une furca à branches parallèles, relativement aussi longues que chez la femelle; soie dorsale plus longue. Article 3 de l'enp. P 4 plus allongé. P 6 formée d'une épine interne, d'une soie médiane plus courte et d'une longue soie externe qui dépasse un peu le bord postérieur de l'Abd. 2 $(18:12:43~\mu)$.

29. — Thermocyclops neglectus (Sars, 1909). (Fig. 22.)

C'est la quatrième forme appartenant à ce qu'on peut appeler le groupe hyalinus, trouvée par la Mission belge. La femelle se distingue principalement par la brièveté de la soie apicale interne de la furca par rapport à la longueur de la soie apicale externe et souvent aussi par sa soie dorsale, de longueur à peu près égale à celle de la soie apicale externe. Un exemplaire à soie dorsale très longue est représenté sur la figure 22.

30. — Thermocyclops schuurmanæ (Kiefer, 1928).

Espèce assez grande, robuste, à branches de la furca peu divergentes, parfois parallèles, environ trois fois aussi longues que larges, à soie dorsale considérablement plus longue que la soie apicale externe, à soic apicale interne de longueur plus de deux fois supérieure à celle de la soie apicale externe; réceptacle séminal à bras latéraux assez épais, fortement recourbés; ovisacs petits, renfermant un petit nombre d'œufs (je n'en ai compté que quatre dans un sac).

31. — Thermocyclops retroversus (Kiefer, 1929). (Fig. 26.)

Entre les deux formes de Kiefer de Th. macracanthus et de Th. retroversus la différence principale semble résider dans les tailles; la longueur de la première étant donnée comme de 920 à 960 μ et celle de la seconde comme de 600 à 720 μ . Les modifications des contours du réceptacle séminal semblent trop peu accusées pour justifier, à elles seules, une distinction spécifique. Il est possible que l'un de ces noms doive tomber en synonymie. Aussi il m'a été difficile de

décider à quelle « espèce » il conviendait de référer les exemplaires du lac Kivu dont la longueur a varié de 817 à 874 μ . Le réceptacle séminal de ces animaux ressemble cependant un peu plus à celui donné pour Th. retroversus qu'à celui figuré pour l'autre forme.

32. — Thermocyclops schmeili (Poppe et Mrázek, 1894). (Fig. 27.)

La Mission belge a fait une découverte d'un intérêt considérable dans une mare de la plaine de la Ruindi près de Kamande (Parc National Albert), car, à ma connaissance, l'espèce très remarquable de Zanzibar décrite par Poppe et Mrázek, en 1894, sous le nom de C. schmeili, n'avait plus jamais été signalée par la suite. Je donne ci-dessous une description des exemplaires recueillis au Parc National Albert:

Femelle grande et robuste. Longueur 900 à 1083 µ. Rebords des angles latéropostérieurs des segments Th. 3 à Th. 5 présentant des crénelures très évidentes. Rebords postérieurs des segments abdominaux 1 à 3 découpés en petites dents sur la face ventrale. Celui de l'Abd. 4 garni d'une rangée continue de plus de 20 très petites épines. Branches de la furca divergentes, de 3,5 à 4,33 fois aussi longues que larges, à rebord interne cilié. Soie dorsale plus courte que la soie apicale externe. Soie apicale interne moins de deux fois aussi longue que la soie apicale externe (rapport chez 4 ♀♀ ovigères de 1,56 : 1 à 1,72 : 1). A 1 formée de 17 articles, courte, n'atteignant en général pas le bord postérieur de Th. 1. Formule des épines 2-3-3. Lamelle basilaire de P 4 sans renflements faisant saillie au-dessus du rebord libre, mais garnie de chaque côté de 2 ou 3 petites épines et ornementée de nombreux poils disposés à des niveaux différents. Article 3 de l'enp. P 4 environ deux fois et demie aussi long que large, armé de deux grêles épines apicales moins longues que l'article, dont l'interne surpasse légèrement l'externe en longueur. Soie de l'article basilaire de P 5 courte. Celle de l'article 2 considérablement moins longue que l'épine interne de cet article, qui est forte et barbelée. Réceptacle séminal d'aspect distinctif, mais ressemblant un peu à celui de M. leuckarti. Ovisacs grands, dépassant la furca, écartés du corps, renfermant chacun de 22 à 36 œufs.

Mâle. Longueur 731 à 760 μ . Furca à branches légèrement divergentes ou parallèles, de 4 et 4,65 fois aussi longues que larges (2 σ). Soie dorsale presque aussi longue que la soie apicale externe. Article 3 de l'enp. P 4 plus allongé que chez la femelle. P 6 représentée par une épine interne, une soie médiane plus courte et une soie externe plus longue que l'épine (épine : soie médiane : soie externe chez 2 σ , 28 : 20 : 37 μ , 27 : 22 : 33 μ).

En comparant ces animaux avec la description et les figures données par Poppe et Mrázek de C. schmeili, je crois qu'il n'y a aucun doute quant à l'identité de cette espèce. D'autre part, grâce à l'obligeance de M. le Prof^r Henri Gauthier, j'ai pu me rendre compte de l'identité entre le Th. crenulatus Brehm de Madagascar et les exemplaires du Parc National Albert (fig. 27).

REMARQUES GÉNÉRALES.

En ce qui concerne le lac Tanganika, objet principal des recherches de la Mission hydrobiologique belge, 1946-1947, la première étude sur la faune cyclopidéenne qui en ait été faite, a été celle de G. O. Sars (coll. W. A. Cunnington) publiée en 1909. Sars a alors fait connaître les 17 espèces suivantes, toutes, sauf deux, décrites pour la première fois :

Cyclops agiloides
Cyclops euacanthus
Cyclops semiserratus
Cyclops lævimargo
Cyclops angustus
Cyclops rarispinus
Cyclops ciliatus
Cyclops tenellus

Cyclops oligarthrus
Cyclops compactus
Cyclops varicans
Cyclops cunningtoni
Cyclops pachycomus
Cyclops exiguus
Cyclops attenuatus
Cyclops leuckarti
Cyclops neglectus

Les échantillons étudiés par G. O. Sars, dans lesquels ont été trouvées ces espèces, semblent avoir été pêchés surtout dans les régions littorales du lac. Dans deux cas (C. euacanthus et C. compactus) ils provenaient d'eau étrangère au lac. Sept des espèces restantes sont connues également dans d'autres parties de l'Afrique ou du monde. Nous obtenons ainsi huit espèces qui n'ont pas encore été signalées ailleurs et qu'on peut par conséquent, jusqu'à plus ample information, considérer comme endémiques aux bords du lac Tanganika. L'une de celles-ci (C. exiguus) a été décrite d'une façon insuffisante et doit peut-être tomber en syonymie avec le Cr. bicolor linjanticus. Je récapitule les noms des sept Cyclopides paraissant endémiques au lac Tanganika:

Cyclops semiserratus Cyclops lævimargo Cyclops rarispinus Cyclops ciliatus

Cyclops oligarthrus Cyclops cunningtoni Cyclops attenuatus

En 1928 a paru l'étude de R. Gurney (coll. S. R. B. Pask), qui a donné les espèces suivantes :

Cyclops agiloides (Eucyclops serrulatus)
Eucyclops rarispinus
Cyclops prasinus (? Tropocyclops confinis)
Mesocyclops tenellus (Tropocyclops tenellus)
Platycyclops oligarthrus (Paracyclops oligarthrus)
Paracyclops coperes (Ectocyclops coperes),

Cyclops varicans (Microcyclops varicans)
Microcyclops attenuatus (Cryptocyclops attenuatus), Q1
Microcyclops tanganicæ (Cryptocyclops tanganicæ)

Microcyclops gemellus (Cryptocyclops gemellus) Cyclops leuckarti (Mesocyclops leuckarti)

De ces onze formes, quatre avaient été pêchées dans des eaux apparemment étrangères au lac. Parmi les autres, quatre avaient déjà été signalées par G. O. Sars, trois étaient décrites comme nouvelles pour la science (*Paracyclops*

coperes, Microcyclops tanganicæ, Microcyclops gemellus).

L'auteur ayant étudié plus récemment des pêches d'Entomostracés du lac Tanganika est R. Monti, en 1931 (Expédition Baragiola-Durini), M^{me} Monti a pu identifier les Cyclopides suivants parmi des récoltes faites uniquement à l'extrémité sud du lac :

Cyclops albidus Cyclops tenellus Cyclops varicans Cyclops leuckarti

La première de ces espèces, qui n'avait pas encore été signalée dans le bassin du Tanganika, était la forme prédominante dans le plancton à 100 m de distance de la rive.

Enfin, J. P. Harding a signalé de nouveau en 1942 la présence du Microcyclops attenuatus dans le lac Tanganika.

Ajoutons, pour être complet, que les matériaux récoltés en 1912-1913 par Louis Stappers au cours de sa mission au lac Tanganika ont été perdus au cours de la guerre 1914-1918 et les Copépodes rapportés de l'Afrique orientale britannique par la Mission Dogiel-Sokolov (1915-1916) ne semblent pas avoir fait l'objet d'étude et ne sont pas mentionnés dans le mémoire de G. I. Verechtchaguine.

En ajoutant aux espèces déjà connues celles trouvées par la Mission hydrobiologique belge nous obtenons un total de 34 Cyclopides provenant du lac Tanganika et de son aire de drainage, abstraction faite ici du système du lac Kivu. Comme je l'ai déjà dit, il convient peut-être d'exclure de ce nombre le C. exiguus, par suite du manque de certains détails et de sa grande ressemblance avec Cr. bicolor linjanticus.

Des 33 espèces restantes, 19 sont connues d'autres régions. Il reste donc 14 espèces, dont deux et peut-être trois ont été pêchées dans des eaux étrangères au lac. Nous avons ainsi un total de 11 Cyclopides bien définis qui ne sont connus que du lac Tanganika et qui presque tous semblent être des formes littorales. L'un d'eux, le *M. cunningtoni*, a cependant été pris au moins deux fois dans des pêches éloignées des rives et l'on peut ainsi croire qu'il mène aussi une existence pélagique.

Il est intéressant de relever que parmi les 11 espèces qu'on peut présumer être endémiques au lac Tanganika, près de la moitié, c'est-à-dire 5, appartiennent au genre Eucyclops, dont on a jusqu'à présent constaté 9 représentants dans le lac, une espèce est un Paracyclops, une autre un Ectocyclops et quatre des Microet Cryptocyclops.

Les résultats obtenus par la Mission hydrobiologique belge confirment ainsi ceux de G. O. Sars; on peut en conclure que le lac Tanganika constitue pour les Cyclopides un milieu éminemment favorable à la production de formes endémiques, portant d'une façon prédominante sur les genres Eucyclops et Micro-Cryptocyclops.

Il faut cependant remarquer que le lac Tanganika a été beaucoup mieux exploré que n'importe quel autre des grands lacs africains et que les récoltes dans les petites eaux des environs ont été bien moins nombreuses que celles dans le lac même. Ainsi, avec une meilleure étude de la faune des autres eaux du centre de l'Afrique, il est possible que le nombre d'espèces apparemment endémiques au lac Tanganika pourra être réduit. D'autre part, le fait que presque chaque récolte effectuée dans le lac Tanganika a révélé des formes nouvelles et que même des pêches d'une très grande envergure et conduites à des saisons différentes n'en ont pas rapporté toutes les espèces qu'on y avait déjà trouvées (au moins 7 espèces déjà connues du lac Tanganika ne furent pas rapportées par la Mission hydrobiologique belge) donne à penser que ce grand lac n'a pas encore livré tous ses secrets et héberge encore bien de formes inconnues.

En face de cette richesse étonnante en ce qui concerne les Cyclopides il est intéressant de noter que G. O. Sars n'y avait trouvé qu'un seul Calanoïde (Diaptomus simplex Sars). Dans les nombreux échantillons pélagiques récoltés par la Mission hyrobiologique belge je n'ai aussi vu que cette seule et même espèce, qui du reste était le constituant principal du plancton. J'ai aussi noté l'absence totale de Cladocères dans ces échantillons.

Pour ce qui concerne le lac Kivu, les pêches y furent beaucoup moins nombreuses et n'ont donné que 13 Cyclopides différents, tous répandus dans d'autres parties de l'Afrique. Antérieurement on ne connaissait de ce lac que deux espèces, rapportées par l'Expédition allemande en Afrique Centrale de 1907-1908, et déterminées par C. van Douwe, le banal Mesocyclops leuckarti et un Thermocyclops qui semble être Th. schuarmanæ (Cyclops oithonoides f. a de van Douwe), forme apparemment pélagique, assez commune dans des lacs du Centre et du Sud de l'Afrique.

J'ai cru utile d'ajouter à l'étude présente un tableau montrant la répartition des Cyclopides qu'on connaît actuellement dans les parties du continent africain situées approximativement au Sud du Tropique du Cancer (¹).

Pour la subdivision du vaste continent j'ai dû suivre les limites administratives des divers territoires et pour réduire leur nombre j'ai parfois été obligé de les grouper, ce qui a eu l'inconvénient d'en faire des divisions souvent très inégales, s'étendant dans quelques cas sur des totaux de 20° latitude et de 30° longitude. Ainsi l'Union Sud-Africaine comprend ici l'ancien Sud-Ouest africain allemand; l'Afrique Orientale britannique, le Zanzibar, les territoires de Tanganika, de Kenia et de l'Ouganda; l'Afrique équatoriale française, le Gabon, le Moyen-Congo, l'Oubangui-Chari et le Tchad; enfin l'Afrique occidentale française, la Mauritanie, le Sénégal, la Guinée française, le Soudan français, le Niger, la Côte d'Ivoire et le Dahomey.

J'ai indiqué pour chaque espèce, dans la mesure du possible, le premier auteur l'ayant signalée dans chaque région, même dans les cas où il l'a méconnue et mentionnée sous un autre nom, et j'ai renvoyé par un double numérotage à la bibliographie afin qu'on puisse retrouver facilement les passages en question.

⁽¹) Un tableau du même genre pour les espèces rapportées de l'Afrique du Nord est en voie de publication ailleurs.

Ainsi on trouvera ces renvois entre parenthèses après chaque référence bibliographique, les chiffres romains se rapportant aux divisions politiques et les chiffres arabes aux espèces.

Il me reste à remercier très vivement M. Victor Van Straelen, Directeur de l'Institut royal des Sciences naturelles de Belgique, et Président du Comité de Coordination pour les recherches hydrologiques au lac Tanganika, pour m'avoir donné l'occasion d'étudier le matériel intéressant qui a fait l'objet de ce travail. Je suis reconnaissant à M. A. Capart, Conservateur-adjoint à cet Institut et qui, ayant participé à l'exploration, a lui-même récolté la plus grande partie des échantillons. Au cours de ce travail, M. A. Capart n'a cessé de m'aider de ses conseils et de ses renseignements.

Cyclopides rapportés du lac Tanganika et de ses environs immédiats.

		Aute	eurs		iolo-	Esp	èces
	G. O. SARS, 1909	R. GURNEY, 1928	R. Monti, 1931	J. P. HARDING, 1942	Mission hydrobiolo- gique belge 1946-1947	Endémiques	Réparties
Macrocyclops albidus (JURINE)			+		+	-4	+
Eucyclops serrulatus (FISCHER)	+	+	T .		+		+
Eucyclops euacanthus (SARS)	The Street	_		, Tak	The Parents	10	+
Eucyclops semiserratus (SARS)	(+)				(+)	7	1
	+	_		-	+	+	-
Eucyclops lævimargo (SARS) Eucyclops angustus (SARS)	+			1	+	+	1
	+		Factor 1	1	_	200	+
Eucyclops rarispinus (SARS) Eucyclops ciliatus (SARS)	++	+			+	+	-
						+	
Eucyclops caparti sp nov.					+	+	
Eucyclops paucidenticulatus sp. nov	-				(+)	(+)	-
Afrocyclops gibsoni (BRADY)		_	317		+		+
Tropocyclops confinis (KIEFER)	-	+	_	_	+	_	+
Tropocyclops tenellus (SARS)	+	+	+	_	+	_	+
Paracyclops oligarthrus (SARS)	+	+		_	_	+	_
Ectocyclops rubescens Brady	1-7		1		+	-	+
Ectocyclops hirsutus Kiefer	-		17-	-	+	-	+
Ectocyclops compactus (SARS)	(+)	277	_		T	(+)	-
Ectocyclops coperes (GURNEY)	1	+	-	-	_	+	_
Megacyclops viridis latipes (LOWNDES)	-		-	_	+	_	+
Microcyclops varicans (SARS)	+	+	+	_	+	-	+
Microcyclops davidi (Chappuis)		-	-	_	+	_	+
Microcyclops jenkinæ (LOWNDES)	_	_	_		+	-	+
Microcyclops cunningtoni (SARS)	+	_	-		+	+	-
Microcyclops pachycomus (SARS)	+	_	-		=	-	+
Cryptocyclops bicolor linjanticus (Kiefer)	-	-	-	-	+	-	+
Cryptocyclops exiguus (*) (SARS)	+	-	-	-	=	-	?
Cryptocyclops attenuatus (SARS)	+	+	-	+	+	+	-
Cryptocyclops tanganicæ (GURNEY)	-	+	-	_	+	+	-
Cryptocyclops gemellus (GURNEY)	-	+	_	-	_	+	-
Mesocyclops leuckarti (CLAUS)	+	+	+	_	+	_	+
Thermocyclops hyalinus (Rehberg)		-	_	_	(+)	-	+
Thermocyclops neglectus (SARS)	+	_	-	-	+	ATTS:	+
Thermocyclops pachysetosus sp. nov	-	-	-		(+)	(+)	-
Thermocyclops schuurmanæ (Kiefer)	-	-	-	57176	+	-	+

^(*) Espèce douteuse.

 $[\]operatorname{Un}$ + mis entre parenthèses signifie que l'espèce n'a pas été trouvée dans le lac même.

Cyclopides rapportés du lac Kivu et de ses environs immédiats.

	Auteur: C. van Douwe, 1912	Mission hydro- biologique belge, 1946-1947	Espèces réparties ailleurs
Eucyclops serrulatus (FISCHER)		+	+
Eucyclops cf. sublævis (Sars)		4	
Afrocyclops gibsoni (Brady)		+	+
Afrocyclops doryphorus (Kiefer)		+	+
Tropocyclops confinis (KIEFER)		+	+
Paracyclops affinis (SARS)		+	+
Ectocyclops rubescens Brady		+	+
Ectocyclops hirsutus Kiefer		+	+
Microcyclops varicans (SARS)		+	+
Cryptocyclops bicolor linjanticus (Kiefer)		+	+
Mesocyclops leuckarti (CLAUS)	+	+	+
Thermocyclops consimilis (Kiefer)		+	+
Thermocyclops retroversus (KIEFER)		+	+
? Thermocyclops schuurmanæ (Kiefer)	+		+

Liste des abréviations utilisées dans le texte.

A1 = Première antenne; Abd. = segment abdominal; Art. = article; basp. = basipodite; enp. = endopodite; exp. = exopodite; P = patte; Th. = segment thoracique.

Abréviations des noms de genre utilisés dans le tableau de répartition géographique.

A = Afrocyclops; Al. = Allocyclops; B = Bryocyclops; C = Cyclops; Cr. = Cryptocyclops; D = Dioithona; E = Eucyclops; Ec. = Ectocyclops; L = Leptocyclops; M = Macrocyclops; Meg. = Megacyclops; Mes. = Mesocyclops; Met. = Metacyclops; Mic. = Microcyclops; O = Oithona; P = Paracyclops; Pach. = Pachycyclops; Pl. = Platycyclops; T = Tropocyclops; Th. = Thermocyclops.

INDEX BIBLIOGRAPHIQUE (*).

BOURNE, G. C., 1893 (Proc. zool. Soc. Lond., p. 165) (V: 58).

Brady, G. S., 1904 (Proc. zool. Soc. Lond., II, pp. 122-124) (I: 29, 41, 46, 80).

-- 1910 (Ann. trop. med. parasit., IV, pp. 239-246) (XIII: 29, 66, 80).

Brehm, V., 1909 (Zool. Anz., XXXIV, p. 799) (XI: 25, 38).

Chappuis, P. A., 1922 (Rev. Suisse Zool., XXIX, pp. 169, 171-173) (IX: 8, 29, 38, 44, 47, 60, 63, 66).

CLEVE, P. T., 1905 (Mar. invest. S. Africa, III, pp. 192-195) (I:1, 3, 5, 7).

DADAY, E., 1910 (Zoologica, XXIII, fasc. 59, pp. 107, 108) (III: 38, 45; V: 66).

1910 (Sitz.-ber. Akad. Wiss. Wien, CXIX [1], pp. 580, 581) (IX: 9, 45, 58, 80).

Douwe, C. van, 1912 (Denkschr. med.-naturw. Gesellsch. Jena, XVII, p. 23) (I:73).

- 1912 (Wiss. Ergebn. deut. Zentral-Afrika-Exp., 1907-1908, III, Zool., pp. 488-490)
 (V: 89; VII: 8, 9, 31, 38, 80, 89, 90, 94).
- 1912 (Zool. Jahrb. Syst., XXXIII, p. 7) (V: 86, 92).
- 1914 (Wiss. Ergebn. zweit. deut. Zentral-Afrika-Exp., 1910-1011, I, pp. 25, 27-29)
 (VIII: 8, 12, 47, 58, 80, 83, 94).

GIESBRECHT, W., 1896 (Zool. Jahrb. Syst., IX, p. 317 (IX: 1, 5, 7).

Graham, W. M. et Brady, G. S., 1907 (Ann. trop. med. parasit., I, pp. 419, 420) (XIV: 29, 38, 40, 45, 68, 80).

GUERNE, J. DE et RICHARD, J., 1891 (Bull. Soc. zool. France, XVI, p. 223) (XVI: 80).

- 1892 (Mém. Soc. zool. France, V, pp. 535-537) (XVI: 9, 36, 84).

GURNEY, R., 1911 (Ann. mag. nat. hist., VII, 8° sér., p. 32) (IX: 79, 94).

- 1928 (Proc. zool. Soc. Lond., I, pp. 319, 321, 322) (V: 39, 49, 69, 71, 72).
- 1933 (Brit. fresh-wat. Copepoda, III, p. 260) (XIII: 58).

HARDING, J. P., 1942 (Ann. mag. nat. hist., IX, 11° sér., p. 175) (II: 19, 20).

KIEFER, F., 1926 (Zool. Anz., LXIX, p. 23) (XI: 26).

- 1927 (Faune Col. franc., I, fasc. 6, pp. 536, 537, 567) (VII: 85; XI: 8, 9, 11, 46, 58, 60, 68, 80, 83; XII: 68).
- 1928 (Zool. Anz., LXXVI, p. 9) (I: 89, 94; II: 8, 66, 94).
- 1929 (Ztschr. Wiss. Zool., CXXXIII, p. 39) (V: 65).
- 1929 (Zool. Anz., LXXX, pp. 314, 315) (I:11, 86, 90, 91).
- 1929 (Zool. Anz., LXXXIII, p. 324) (IV: 84).
- 1932 (Zool. Anz., C, p. 3) (V: 61).
- 1932 (Bull. Soc. Sci. Cluj, VI, pp. 525-528) (XVI: 15, 30, 32, 52, 57, 76, 78, 95, 96).
- 1933 (Arch. Hydrob., XXVI, pp. 122-125) (XVI: 8, 11, 17, 29, 38, 40, 41, 44, 46, 47, 58, 60, 66, 68, 83, 85).

^(*) Les chiffres entre parenthèses renvoient au tableau général (Annexe I), le chiffre romain indiquant la région géographique, les chiffres arabes les espèces.

- Kiefer, F, 1934 (Zool. Jahrb. Syst., LXV, pp. 101-104, 173) (I: 8, 9, 36, 66; II: 10, 29, 46, 84; IV: 87, 94).
- -- 1935 (Bull. Soc. Sci. Cluj, VIII, pp. 237-242) (V: 23, 24, 31, 33, 34, 53, 54, 55, 56, 77).
- 1937 (Arch. Hydrob., XXXII, p. 471) (VI: 8, 9, 11, 38, 46, 47, 58, 66, 74, 80, 84, 85, 86, 87, 90, 91, 94).
- 1939 (Mém. Mus. Hist. nat. Paris, V, fasc. 56, pp. 321, 323, 348, 357))V: 8, 17, 30, 44, 47, 51; XII: 46).

LINDBERG, K., 1950 (Public. Cult. Comp. Diamant. Angola nº 7, pp. 51-54) (VI: 17, 41).

- 1950 (Bull. Soc. zool. France, LXXV, pp. 146, 147) (XIII: 37, 83).
- 1951 (sous presse, Bull. Soc. zool. France) (XIII: 4, 38, 84, 92).
- 1951 (Explor. Parc Nat. Upemba. Miss. G. F. de Witte, fasc. 2) (VII: 17, 36).
- LOWNDES, A. G., 1930 (Proc. zool. Soc. Lond., I, p. 162) (X: 8, 9, 10, 29, 38, 41, 44, 46, 50, 58, 66, 80, 84, 86).
- 1931 (Proc. zool. Soc. Lond., II, p. 1292) (V:50).
- 1933 (Ann. mag. nat. hist., XI, 10° sér., p. 308) (V: 46, 59, 63).
- 1936 (Jl. Linn. Soc. Lond., XL, p. 3) (V:83).
- MARQUES, E., 1950 (Communication personnelle, corroborée par envoi d'exemplaires) (XV: 4).
- Monti, R., 1931 (Rendi Conti Ist. Lombardo Sci. lett., LXIV, 2° sér., pp. 1115-1122) (II: 39).
- MRÁZEK, A., 1898 (Deutsch-Ost-Afrika, IV, livr. 9, pp. 1, 3) (V: 9, 16, 38, 45, 87).
- POPPE, S. A. et MRÁZEK, A., 1894 (Mitteil. Naturhist. Mus. Hamburg, Beiheft Jahrb. Hamb. Wiss. Anst., XII, pp. 131, 132) (V: 41, 80, 94, 97).
- RÜHE, F. E., 1914 (Deut. Südpol.-Exp., 1901-1903, XVI, Zool., VIII, pp. 8, 9) (I: 9, 10, 75).
- Sars, G. O., 1909 (Proc. zool. Soc. Lond., pp. 53-62) (II: 9, 11, 13, 22, 43, 48, 58, 62, 63; III: 8, 18, 35, 58, 80, 84; V: 14, 18, 21, 43, 62; VII: 39, 62, 84).
- 1913 (Crust. Norw., VI, p. 62) (I:83).
- 1927 (Ann. S. Afric. Mus., XXV, pp. 112, 114, 116, 117, 121, 125, 128, 133, 135) (I: 38, 42, 45, 64, 70, 81, 82, 84, 93).
- Scott, Тн., 1894, Trans. Linn. Soc. Lond., VI, 2° sér., Zool., pp. 13-15, 19, 21, 22, 89-91) (VI:1, 2, 6; VII:2, 3, 6; VIII:1, 3; XIII:2, 3; XIV:1, 2, 3; XVI:1, 3).
- THOMPSON, I. G., 1900 (Proc. Trans. Liverp. biol. Soc., XIV, p. 284) (IV: 1, 3).

TABLEAUX

donnant les dimensions des spécimens étudiés.

tation n°	Sexe	Longueur _{\mu}	Furca longueur : largeur	Furca S. dorsale μ	Furca Soies apicales _µ
Euc	yclops cf. su	ublævis (SARS).			
507	Q	950	$143:20 \ \mu = 7,15:1$	57	65:250:461:68
507	<u>Ф</u>	978	$137:20 \ \mu = 6.85:1$	53	65:259:459:68
507	ď	665	$73:16 \ \mu = 4,56:1$	37	25:160:360:35
507	ď	722	73 : 20 μ = 3,65 : 1	38	35:255:439:40
Euc	yolops euac	anthus (SARS).			
260	0	779	97: 21 $\mu = 4,62:1$	43	52:250:357:118
260	Ŷ O	769	$92:23 \ \mu = 4,00:1$	45	48:215:332:108
260	ф ф ф	760	$100:19 \ \mu = 5,26:1$	45	50:237:350:107
Euc	volops semi:	serratus (SARS).			
15		902	$133:20~\mu=6,65:1$	95	77:303:484:78
138	<u>Ф</u>	1.064	$133 : 20 \ \mu = 0,03 : 1$ $179 : 23 \ \mu = 7,78 : 1$	100	70:354:524:92
58	ď	807	$90:15 \ \mu = 6,0:1$	67	47:217:317:55
	O	00.	00 . 10 µ = 0,0 . 1	1	11 . 217 . 317 . 33
Euc	yolops lævir	margo (SARS).			
33	Q	- 1	$133:20 \ \mu = 6,65:1$	1 - 1	53:x:x:67
126	<u>Ф</u>	1.045	$142:20~\mu=7,01:1$	75	62:300:359:70
Euc	yolops raris	pinus (SARS).			
58	Q	845	$83:23~\mu=3,60:1$	50	52:217:334:x
58	o Q	788	$75:20 \ \mu = 3,75:1$	43	53:208:320:75
58	Q	807	$67:22 \ \mu = 3.04:1$	48	58:225:x:75
58	Q	750	$83:23 \ \mu = 3,60:1$	40	57:x:x:83
88	Q	769	$75:22 \ \mu = 3,41:1$	42	50:210:292:70
58	ď	617	$47:18~\mu=2,61:1$	35	40:x:x:67
Euc	yolops capa	rti sp. nov.			
60	0	940	$102:25 \ \mu = 4.01:1$	67	61:234:357:108
60	<u>ұ</u> ұ	921	$102 : 25 \mu = 4,01 : 1$ $113 : 27 \mu = 4,18 : 1$	75	67:237:354:108
60	₹ ď	684	$52:23 \ \mu = 2,26:1$	13	50: x: x: 92
15	ð	646	$50:20 \ \mu = 2,50:1$	43	43:210:354:88
	0		, 3,3,1		25.122.100.100
Euc	yolops pauc	identiculatus sp.			
33	P	855	$75:21~\mu=3,57:1$	72	52:234:350:100
33	ď	655	$50:20 \ \mu=2,50:1$	50	45:207:x:92

	Art. term. Enp. P4 longueur ; largeur	Art. term. Enp. P4 Ép. int. : ép. ext.	P5 Ep. : s. méd. : s. ext. μ	P6 Ep. : s. méd. : s. ext. μ
				Alternative extension
	$55:23 \ \mu = 2,39:1$	$67:58 \ \mu = 1,16:1$	42:47:39	TO THE RESERVE TO THE
	$53:23 \ \mu = 2,30:1$	$67:58 \ \mu = 1,16:1$	42 : x : x	
	$45:17 \ \mu = 2,65:1$	$50:45~\mu=1,11:1$	32:x:x	50:25:x
	$50:22~\mu=~2,27:1$	$60:47~\mu=1,28:1$	35:42:33	43 : 35 : 27
	$55:19 \ \mu = 2,89:1$	$52:38 \ \mu = 1,37:1$	14:46:27	
i	$58:18 \ \mu = 3,22:1$	$46:35 \mu = 1,37:1$	14 . 40 . 21	
	$38:18 \mu = 3,22:1$	$46:35 \mu = 1,31:1$		
			-	manth anniferancia
	$50:24~\mu=2{,}08:1$	$62:36 \ \mu = 1,70:1$	10:67:108	
			10:70:100	
	$47:24 \ \mu = 1,96:1$ $40:17 \ \mu = 2,35:1$	$62:33 \ \mu = 1.89:1$	SANCTON AND AND AND AND AND AND AND AND AND AN	
	$40:17 \ \mu = 2,35:1$	$45:25~\mu=1,80:1$	9:42:75	10:33:58
1	$46:27~\mu=1,70:1$	$62:37~\mu=1,67:1$	_	
	$48:27 \ \mu = 1,78:1$	$62:37 \ \mu = 1,67:1$	13:67:116	
	_		- 1	9 1 1 1 1 1 1
	_	_		<u></u>
	$42:25~\mu=1,68:1$	$50:42~\mu=1,19:1$		
	$40:22~\mu = 1.82:1$	$43:33 \ \mu = 1,30:1$	27:38:42	-
	-		-	
	$35:18~\mu=1,94:1$	$38:33 \ \mu = 1,15:1$	_	25:35:33
	$42:30 \ \mu = 1,40:1$	$51:42~\mu=1,21:1$	38:45:67	V 1 00
			36 . 40 . 01	
	$37:22~\mu=1,68:1$	$48:43~\mu=1,12:1$		43:27:34
	$36:19 \ \mu = 1,89:1$	$42:28 \ \mu = 1,50:1$	34:38:37	41:35:35
	45:18 $\mu = 2,50:1$	$50:37~\mu=1,35:1$	63:50:57	
				38:33:35

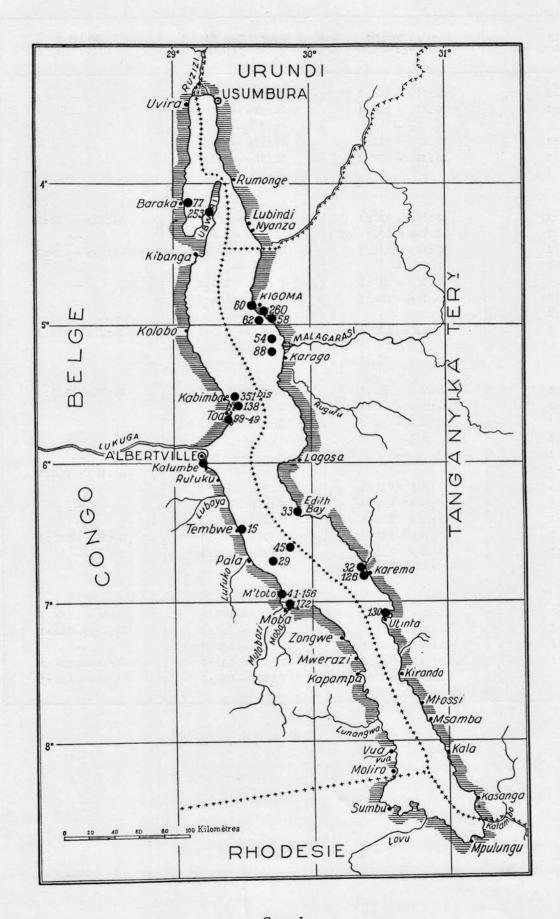
	Sexe	Longueur	Furca longueur : largeur	Furca S. dorsale μ	Furca Soies apicales _{\mu}
Afre	ocyclops gibs	soni (Brady).			
58	9	855	$142:16 \ \mu = 8,87:1$	- 1	43:217:300:43
99	Ŷ.	665	$117:13 \mu = 9,0:1$	52	33:167:250:33
507	Ф Ф	741	$108:14 \ \mu = 7,71:1$	53	37:227:364:32
Albertville	A	055	4/0 40 000 4	50	43:200:284:42
8.XI.1946	φ.	855	$142:16 \mu = 8.87:1$ $110:16 \mu = 6.87:1$	52 57	43 : 200 : 284 : 42 43 : x : x : 37
58	o*	817		50	37: x: x: 37
58	ď	798	$97:14 \ \mu = 6,93:1$	47	
506	ď	836	$110:15~\mu=7{,}33:1$	47	43:x:x:43
Afr	ocyclops dor	ryphorus (Kiefer)			
507	1 0	1.187	$185:22 \ \mu = 8,41:1$	63	70:334:400:60
507	Ф Ф Ф	1.149	$170:22 \ \mu = 7,73:1$	57	67:279:x:50
535	0	1.060	$179:20 \ \mu = 8,95:1$	55	47 : x : x : 43
507	· .*	1.206	$168:22 \ \mu = 7,63:1$	55	68:334:434:58
Tro					
58	φ	655	45: 16,7 μ = 2,69: 1	49	32 : x : x : 26
58 283	Р	546	$32:15~\mu=2,13:1$	39	25:102:187:22
58 283 283	φ φ	546 532	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$	39 35	25:102:187:22 25:107:184:23
58 283 283 283	Ф Ф Ф	546 532 570	$32:15 \mu = 2.13:1$ $32:13 \mu = 2.46:1$ $33:13.5 \mu = 2.44:1$	39 35 42	25:102:187:22 25:107:184:23 25:92:177:20
58 283 283 283 283	Q Q Q Q	546 532 570 508	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$ $33:13,5 \mu = 2,44:1$ $33:15 \mu = 2,20:1$	39 35 42 53	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22
58 283 283 283 283 283 506	Ф Ф Ф Ф	546 532 570 508 565	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$ $33:13,5 \mu = 2,44:1$ $33:15 \mu = 2,20:1$ $35:16 \mu = 2,19$	39 35 42 53 57	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25
58 283 283 283 283 506 283	Q Q Q Q Q	546 532 570 508 565 475	$32:15 \mu = 2.13:1$ $32:13 \mu = 2.46:1$ $33:13.5 \mu = 2.44:1$ $33:15 \mu = 2.20:1$ $35:16 \mu = 2.19$ $23:13 \mu = 1.73:1$	39 35 42 53 57 37	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25
58 283 283 283 283 506 283 283	Q Q Q Q O O O	546 532 570 508 565 475 484	$32:15 \mu = 2.13:1$ $32:13 \mu = 2.46:1$ $33:13.5 \mu = 2.44:1$ $33:15 \mu = 2.20:1$ $35:16 \mu = 2.19$ $23:13 \mu = 1.73:1$ $23:13 \mu = 1.73:1$	39 35 42 53 57 37 33	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17
58 283 283 283 283 506 283	Q Q Q Q Q	546 532 570 508 565 475	$32:15 \mu = 2.13:1$ $32:13 \mu = 2.46:1$ $33:13.5 \mu = 2.44:1$ $33:15 \mu = 2.20:1$ $35:16 \mu = 2.19$ $23:13 \mu = 1.73:1$	39 35 42 53 57 37	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25
58 283 283 283 283 506 283 283 506	Q Q Q Q & & & & & & & & & & & & & & & &	546 532 570 508 565 475 484 446	$32:15 \mu = 2.13:1$ $32:13 \mu = 2.46:1$ $33:13.5 \mu = 2.44:1$ $33:15 \mu = 2.20:1$ $35:16 \mu = 2.19$ $23:13 \mu = 1.73:1$ $23:13 \mu = 1.73:1$	39 35 42 53 57 37 33	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17
58 283 283 283 283 506 283 283 506	Q Q Q Q & & & & & & & & & & & & & & & &	546 532 570 508 565 475 484	$32:15 \mu = 2.13:1$ $32:13 \mu = 2.46:1$ $33:13.5 \mu = 2.44:1$ $33:15 \mu = 2.20:1$ $35:16 \mu = 2.19$ $23:13 \mu = 1.73:1$ $23:13 \mu = 1.73:1$	39 35 42 53 57 37 33	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17
58 283 283 283 283 506 283 283 506	우 우 우 우 주 주 주 주 주	546 532 570 508 565 475 484 446	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$ $33:13,5 \mu = 2,44:1$ $33:15 \mu = 2,20:1$ $35:16 \mu = 2,19$ $23:13 \mu = 1,73:1$ $23:13 \mu = 1,73:1$ $31:13 \mu = 2,38:1$ $58:32 \mu = 1,81:1$	39 35 42 53 57 37 33 42	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17 23:93:160:20
58 283 283 283 283 506 283 283 506	우 우 우 우 주 주 주 주 주	546 532 570 508 565 475 484 446	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$ $33:13,5 \mu = 2,44:1$ $33:15 \mu = 2,20:1$ $35:16 \mu = 2,19$ $23:13 \mu = 1,73:1$ $23:13 \mu = 1,73:1$ $31:13 \mu = 2,38:1$ $58:32 \mu = 1,81:1$ $63:33 \mu = 1,90:1$	39 35 42 53 57 37 33 42	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17 23:93:160:20 50:234:542:37 53:267:534:46
58 283 283 283 283 506 283 283 506	우 우 우 우 주 주 주 주 주	546 532 570 508 565 475 484 446	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$ $33:13,5 \mu = 2,44:1$ $33:15 \mu = 2,20:1$ $35:16 \mu = 2,19$ $23:13 \mu = 1,73:1$ $23:13 \mu = 1,73:1$ $31:13 \mu = 2,38:1$ $58:32 \mu = 1,81:1$ $63:33 \mu = 1,90:1$ $63:32 \mu = 1,96:1$	39 35 42 53 57 37 33 42	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17 23:93:160:20 50:234:542:37 53:267:534:46 50:212:457:53
58 283 283 283 283 506 283 283 506	우 우 우 우 주 주 주 주 주	546 532 570 508 565 475 484 446 Descens Brady.	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$ $33:13,5 \mu = 2,44:1$ $33:15 \mu = 2,20:1$ $35:16 \mu = 2,19$ $23:13 \mu = 1,73:1$ $23:13 \mu = 1,73:1$ $31:13 \mu = 2,38:1$ $58:32 \mu = 1,81:1$ $63:33 \mu = 1,90:1$ $63:32 \mu = 1,96:1$ $58:32 \mu = 1,81:1$	39 35 42 53 57 37 33 42	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17 23:93:160:20 50:234:542:37 53:267:534:46
58 283 283 283 283 506 283 283 506 Ect 260 260 506	Q Q Q Q & & & & & & & & & & & & & & & &	546 532 570 508 565 475 484 446 Descens Brady.	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$ $33:13,5 \mu = 2,44:1$ $33:15 \mu = 2,20:1$ $35:16 \mu = 2,19$ $23:13 \mu = 1,73:1$ $23:13 \mu = 1,73:1$ $31:13 \mu = 2,38:1$ $58:32 \mu = 1,81:1$ $63:33 \mu = 1,90:1$ $63:32 \mu = 1,96:1$	39 35 42 53 57 37 33 42	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17 23:93:160:20 50:234:542:37 53:267:534:46 50:212:457:53
58 283 283 283 283 506 283 283 506 Ect 260 260 506 506 506	우 우 우 우 주 중 중 중 중 중 중 중 중 중 중 중 중 중 중 중	546 532 570 508 565 475 484 446 Descens Brady. 750 921 836 807 760	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$ $33:13,5 \mu = 2,44:1$ $33:15 \mu = 2,20:1$ $35:16 \mu = 2,19$ $23:13 \mu = 1,73:1$ $23:13 \mu = 1,73:1$ $31:13 \mu = 2,38:1$ $58:32 \mu = 1,81:1$ $63:33 \mu = 1,90:1$ $63:32 \mu = 1,96:1$ $58:32 \mu = 1,81:1$	39 35 42 53 57 37 33 42 67 70 55 50	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17 23:93:160:20 50:234:542:37 53:267:534:46 50:212:457:53 52:220:462:52
58 283 283 283 283 506 283 283 506 Ect 260 260 506 506 506	우 우 우 우 주 중 중 중 중 중 중 중 중 중 중 중 중 중 중 중	546 532 570 508 565 475 484 446 Descens Brady.	$32:15 \mu = 2,13:1$ $32:13 \mu = 2,46:1$ $33:13,5 \mu = 2,44:1$ $33:15 \mu = 2,20:1$ $35:16 \mu = 2,19$ $23:13 \mu = 1,73:1$ $23:13 \mu = 1,73:1$ $31:13 \mu = 2,38:1$ $58:32 \mu = 1,81:1$ $63:33 \mu = 1,90:1$ $63:32 \mu = 1,96:1$ $58:32 \mu = 1,81:1$	39 35 42 53 57 37 33 42 67 70 55 50	25:102:187:22 25:107:184:23 25:92:177:20 27:112:179:22 28:119:184:25 22:88:150:25 20:97:160:17 23:93:160:20 50:234:542:37 53:267:534:46 50:212:457:53 52:220:462:52

	Art. term. Enp. P4 longueur : largeur	Art. term. Enp. P4 Ep. int. : ép. ext.	P5 Ep. : s. méd. : s. ext. μ	P6 Ep. : s. méd. : s. ext. μ
			38:42:32	
	$37:17 \ \mu = 2.18:1$	$46:42~\mu=1.09:1$	33:42:32	
	THE RESERVE OF THE PARTY OF THE			
			-	
	-		45:33:28	67:27:33
				66:20:27
	$42:20~\mu=2,10:1$	$50:41~\mu=1,22:1$	-	59:18:22
	$57:32~\mu=1,78:1$	$78:62 \ \mu = 1,26:1$	63:45:37	-
	$58:32 \ \mu = 1.81:1$	$70:58 \ \mu = 1,20:1$		-
				- 30
i	67:30 $\mu = 2,23:1$	75:59 $\mu = 1,27:1$	83 : 37 : 33	125 : 36 : 27
	$30:14~\mu=2,14:1$	$79:27 \ \mu = 2,92:1$		
	$27:11 \ \mu=2,45:1$	$63:29 \ \mu = 2,17:1$	33:53:42	
	$26:11 \ \mu = 2,36:1$	$65:25 \ \mu = 2,60:1$	28:50:33	
	$27:12 \ \mu = 2,25:1$	$60:27 \ \mu = 2,22:1$	28:50:33	
1	$27:12 \ \mu = 2,25:1$	$58:25 \ \mu = 2,32:1$	20.00.00	The same
	$28:11 \ \mu = 2.54:1$	$65:27 \ \mu = 2,40:1$		
	$22:10 \ \mu=2,20:1$	$58:28 \ \mu = 2,07:1$		12:13:31
	$25: x\mu = x:1$	$52: x \mu = x:1$		13:13:33
	$26:11~\mu=2,36:1$	$59:28~\mu=2,10:1$		-
	$33:23 \ \mu = 1,43:1$	$87:34~\mu=2,56:1$	90:58:53	
	$37:23 \ \mu = 1,60:1$	$90:32~\mu=2.81:1$	93:55:50	
			70:43:50	
	$30:23~\mu=1,30:1$	$72:32~\mu=2,25:1$	75 : 47 : 43	FAR BOR
		- .	57:28:33	53:33:20
	$40:25~\mu=1,60:1$	83:32 μ = 2,59:1	117:107:105	

Station no	Sexe	Longueur μ	Furca longueur : largeur	Furca S. dorsale μ	Furca Soies apicales _µ
Min	recyclene v	aricans (SARS).			
					FO 080 00
58	φ	921	$83:21 \ \mu = 3.95:1$	43	53:270; x:83
130	- φ	774	$77:21\ \mu=3,66:1$	42	57:292:375:82
518	Ф Ф Ф	769	$68:21\ \mu=3,24:1$	36	60:247:339:80
535	Ş	855	$85:23 \ \mu = 3,69:1$	40	49:284:360:73
Marais Kalumbé	P	1.007	$83:25~\mu=3,32:1$	42	59:270:354:85
Marais Kalumbé	Q	1.007	$83:25~\mu=3,32:1$	50	62:275:367:92
Mic	rocyclops da	avidi (CHAPPUIS).			
130	ę	807	$50:24~\mu=2{,}08:1$	52	57:309:434:92
Mic	rocyclops je	enkinæ (Lowndes)			
172	φ	912	$68:23~\mu=2,95:1$	1 - 1	50:284:384:118
Mic	rocyclops c	unningtoni (SARS)			
32	Q	708	$52:22~\mu=2,36:1$	1 60 1	38:203:325:53
32	Ŷ	769	$57:21~\mu=2,71:1$	60	42:217:325:57
32	0	665	$57:22~\mu=2,59:1$	67	42:214:327:53
32	Ф Ф Ф	769	$55:22 \ \mu = 2,36:1$	67	62:214:334:70
138	0	665	$48:23 \ \mu = 2,09:1$	58	38:203:304:45
138	0	665	$48:23 \ \mu = 2,09:1$	58	37:207:307:47
32	ď	532	$37:17 \mu = 2.18:1$	53	33:175:292:50
Cry	ptocyclops I	picolor linjanticus	(Kiefer).		
		1 670	$60:18~\mu=3,33:1$	30 1	37:172:222:85
58	φ	665	$58:19 \ \mu = 3,05:1$	25	37:173:210:82
58 507	φ 0	726	$68:21 \ \mu = 3,03:1$	35	42:187:237:93
110000	+	798	$68: 21 \ \mu = 3,24:1$ $73: 22 \ \mu = 3,32:1$	33	43:187:239:83
535 Marais	\$	130	$10 \cdot 88 \mu = 0.38 \cdot 1$	00	10 . 201 . 600 . 00
Kalumbé	φ	779	$68:22~\mu = 3{,}09:1$	35	42:184:237:87
Cry	ptocyclops a	attenuatus (SARS).			
54	₫	593	$45:16~\mu=2.81:1$	1 - 1	32 ; x : x : x
Cry	ptocyclops 1	anganicæ (Gurne	Υ).		
60	0	674	$75:19\ \mu=3,95:1$	52	42:189:255:83
60	Ý O	665	$78:17 \mu = 3,39:1$ $78:17 \mu = 4,59:1$	50	37:184:275:x
60	Ŷ O	674	$82:17 \ \mu = 4.82:1$	45	40:187:257:80
60	Ф Ф Ф	693	$82:17 \ \mu = 4.82:1$	47	37:187:254:75
60	ď	494	$48:15 \ \mu = 3,20:1$	30	30:158:242:55

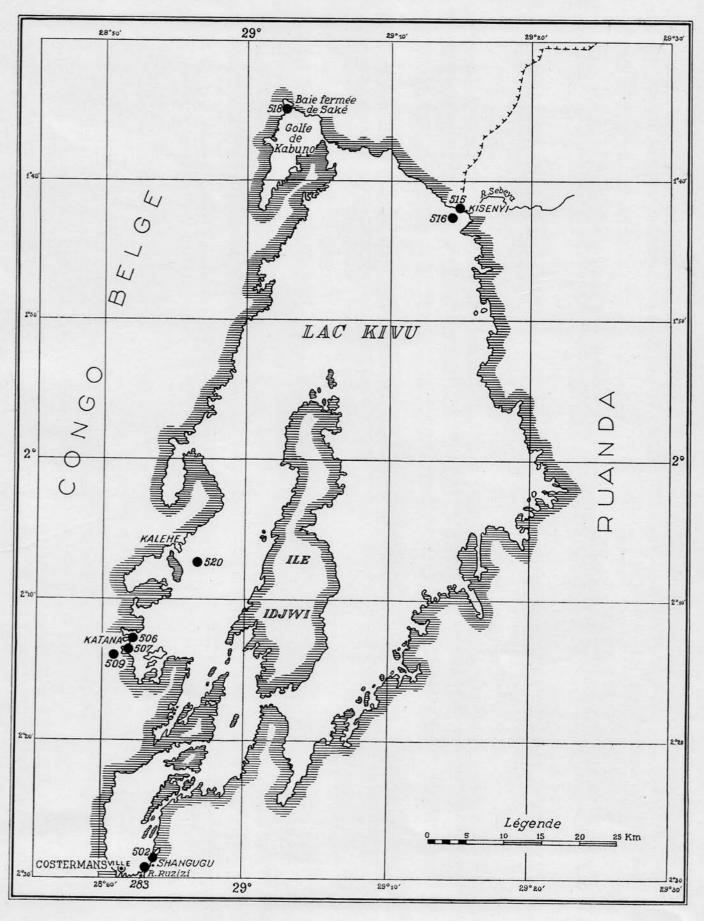
Art, term. Enp. P4 longueur : largeur	Art. term. Enp. P4 Ép. int. : ép. ext.		Bushes II		
			all willing		
$82:28~\mu=2,93:1$	$48:29 \mu = 1,65:1$			_	
$72:28 \ \mu=2,57:1$	$50:27~\mu=1,85:1$	-		_	
$77:32 \mu = 2,40:1$	$50:27~\mu=1,85:1$			_	
$83:32 \ \mu = 2,59:1$	$47:33 \ \mu = 1,42:1$	==		_	
$83:27~\mu=3,07:1$	$50:30~\mu=1,67:1$	_		_	
$87:32~\mu=2,72:1$	$52:33~\mu=1,58:1$	-		_	
at an its an					
$65:32~\mu=~2,03:1$	$58:44~\mu=1,32:1$	-	1	-	
$64:30 \ \mu = 2,13:1$	$-62:42 \ \mu = 1,47:1$	-		-	
$50:28~\mu=1,79:1$	$48:20~\mu=2,40:1$		1	_	
$52:27 \ \mu = 1,93:1$	$53:23~\mu=2,30:1$	_		_	
$57:32~\mu=1,78:1$	$58:27~\mu=2,15:1$	-			
$58:35~\mu=1,66:1$	$60:28~\mu=2.14:1$	-		_	
$48:25~\mu=1,92:1$	$50:23 \ \mu=2,17:1$	-		_	
$47:25~\mu=1,88:1$	$47:22\ \mu=2,14:1$	_		_	
		_		_	
			1		
$47:19\ \mu=2,47:1$	$34:13 \mu = 2.61:1$	-	1		
-		-		_	
The second second		-		_	
$53:26~\mu=2.04:1$	$33:13~\mu=2,54:1$	-		_	
		-	- 12 - 1	-	
$47:15,6 \ \mu=3,01:1$	$41:17 \mu = 2,41:1$	_	1		
, , , , , , , , , , , , , , , , , , ,	11 . 11 p = 0,11 . 1		1		
$47:33 \ \mu = 1,42:1$	$37:15~\mu=2,46:1$	-			
$52:33 \ \mu = 1,58:1$	49 . 99 1 07 . 1			_	
	$43:23 \ \mu = 1,87:1$	_			
$53:32 \ \mu = 1,65:1$	$42:22 \ \mu = 1,90:1$	_		_	
$35:20~\mu=1,75:1$	$27:12 \ \mu = 2,25:1$	-	142	-	

Station nº	Sexe	Longueur _µ	Furca longueur : largeur	Furca S. dorsale _{\mu}	Furca Soies apicales _µ
The	rmocyclops	hyalinus (Rehber	1 G).		
Marais Kalumbé	Q	959	$58:26 \ \mu = 2,23:1$	67	67:218:255:162
Marais Kalumbé	φ	912	$58:26 \ \mu = 2,23:1$	58	68:208:250:150
Marais Kalumbé	Ŷ Q	912	$63:24 \ \mu = 2,62:1$	62	67:210:259:150
Marais Kalumbé		997	$60:26 \ \mu = 2,30:1$	53	75:225:270:158
Marais	Q.				
Kalumbé Marais	φ	1.026	$62:28 \ \mu = 2,21:1$	53	68:214:250:150
Kalumbé	φ	921	$58:25 \ \mu = 2,32:1$	58	73:217:259:152
The	rmocyclops	pachysetosus sp.	nov.		
Marais Kalumbé	Q	880	$50:25~\mu=2,0:1$	50	50:167:179:83
Marais Kalumbé	φ	883	$50:26~\mu=1,92:1$	50	50:150:167:78
Marais Kalumbé	φ	845	$47:27 \ \mu = 1,74:1$	53	57 : x : x : 73
Marais Kalumbé	Q	858	$50:26~\mu=1,92:1$	53	52:158:167:70
Marais Kalumbé	Q	940	$50:25~\mu=2.0:1$	50	57:150:167:83
The	rmocyclops	neglectus (SARS).			
126	0	798	$57:23 \ \mu = 2,48:1$	63	53:177:222:85
126	Ф Ф Ф	769	$55:22 \ \mu = 2,50:1$	57	52 : x : x : 97
126	9	779	$50:22 \ \mu = 2,27:1$	62	55:x:x:90
58	ď	570	$32:15 \ \mu = 2,13:1$	50	28:122:167:77
The	rmocyclops	schuurmanæ (Kii	EFER).		
13	0	1 959 1	$67:21 \ u = 3.19:1$	87	68:245:340:150
13	0	959	$67: 21 \ \mu = 3,19:1$ $72: 23 \ \mu = 3,13:1$	90	67:237:329:149
24	φ φ	931	$63:22 \ \mu = 2.86:1$	92	58:245:329:142
54	o Y	940	$63:20 \ \mu = 3,15:1$	88	67:242:350:150
58	φ φ	893	$60:19 \ \mu = 3,16:1$	83	58:234:342:147
105	Ŷ Ŷ	950	$63:22 \ \mu = 2.86:1$	80	67:x:x:153
302	Ŷ Q	912	$63:22 \ \mu = 2,86:1$	92	57:237:350:143
The	rmocyclops	retroversus (KIEF	ER).		
509	0	845	$65:21~\mu=3,09:1$	103	57:170:213:143
509	P P	845	$62:22 \ \mu = 2,95:1$	103	58:173:210:147
	¥	874	$65:21 \ \mu = 3.09:1$	88	57:162:x:133
	()				
509 509	φ φ	817	$63:20 \ \mu = 3.15:1$	93	58:167:215:150


	Furca s. ap. int. : s. ap. ext.	Art. 3 Enp. P4 longueur ; largeur	Art. 3 Enp. P4 Ép. int. : ép. ext.	P5 Art. 2 Ep. : soie
	ales mie	The state of the s		i w
	2,42:1	$63:20~\mu=3,15:1$	$61:26~\mu=2,35:1$	$60:53~\mu=1,13:1$
	2,20:1		a - Early make	1
	2,24:1	$58:20~\mu=2,90:1$	$53:27~\mu=1,96:1$	manufacture sult
	2,10:1	$60:22~\mu=2,73:1$	$58:27 \ \mu=2,15:1$	$67:53 \ \mu = 1,26:1$
	2,20:1	$62:22 \ \mu = 2.82:1$	$60:30 \ \mu=2,0:1$	$70:47~\mu=1,49:1$
	2,08:1	$57:18 \ \mu = 3,17:1$	$57:25 \ \mu=2,28:1$	$63:57 \ \mu = 1,10:1$
		31.107 - 3,11.11	01.20 p = 2,20.1	ου. σι μ = 1,10 . 1
	1,66 : 1	$58:18~\mu=3,22:1$	$53:23~\mu=2,30:1$	67:50 $\mu = 1,34:1$
	1,56:1	$60:20~\mu=3,0:1$	$53:23~\mu=2,30:1$	-
	1,28:1	$53:20~\mu=2,65:1$	$51:27~\mu=1,89:1$	
	1,35:1	$58:20~\mu=2,90:1$	$55:25~\mu=2,20:1$	
	1,46:1	$58:23 \ \mu=2,52:1$	$52:27~\mu=1,93:1$	$63:50 \ \mu = 1,26:1$
	1,60 : 1	$48:20 \ \mu = 2,40:1$	$48:20 \ \mu = 2,40:1$	
	1,87 : 1	$48:18~\mu=2,67:1$	$44:23 \ \mu = 1.91:1$	- 1
	1,64:1	$45:19\ \mu=2,37:1$	$45:20 \; \mu = 2,25:1$	
	2,75:1	-	Far All -	
	2,20:1	$70:18 \ \mu = 3.89:1$	$53:27 \ \mu = 1,96:1$	$65:60 \ \mu = 1,08:1$
	2,22:1	$68:18~\mu=3{,}78:1$	$52:28 \ \mu = 1,86:1$	$67:53 \ \mu = 1,26:1$
	2,45 : 1	$72:18 \ \mu = 4.0:1$	$52:28 \ \mu = 1,86:1$	
	2,24:1	$72:18 \ \mu = 4.0:1$	$53:28 \ \mu = 1,89:1$	-
- 1	2,53:1	$70:18 \ \mu = 3.89:1$	$54:25 \ \mu = 2,16:1$	
	2,28:1	$73:19 \ \mu = 3.84:1$	$53:28 \ \mu = 1,89:1$	-
	2,51 : 1	$68:18 \ \mu = 3,78:1$	$52:25~\mu=2,08:1$	-
	2,51:1	$58:18 \ \mu = 3.22:1$	$68:18~\mu=3.78:1$	
	2,53:1	$59:18 \ \mu = 3,28:1$	$75:20~\mu=3,75:1$	$60:50 \ \mu = 1,20:1$
	2,33:1	$60:18~\mu=3,33:1$	$75:17 \ \mu = 4,41:1$	$58:47 \ \mu=1,23:1$
	2,59:1	$57:15~\mu=3,80:1$	$73:18 \ \mu = 4.05:1$	-
	2,69:1	$58:16~\mu=3,62:1$	$75:18 \ \mu = 4,17:1$	$60:55\ \mu=1,09:1$

88

K. LINDBERG. — CYCLOPIDES


tation no	Sexe	Longueur _µ	Furca longueur : largeur	Furca S. dorsale µ	Furca Soies apicales _µ
509	φ	817	67 : 21 μ = 3,19 : 1	90	60:167:208:142
509	Q	845	$63:22~\mu=2.86:1$	88	55:167:200:140
509	Ф Ф	864	$63:20 \ \mu = 3,15:1$	92	62:168:205:138
509	· · · · · · · ·	817	$63:20 \ \mu = 3.15:1$	92	55:167:217:143
509	ď	712	$50:18~\mu=2.78:1$	88	40:133:192:118
The	rmocyclops	consimilis (KIEF	ER).		
283	P	670	$45:20 \ \mu = 2,25:1$	45	43:138:163:100
283	Ŷ	636	$41:20 \ \mu = 2,05:1$	47	42:142:158:93
502	φ	722	$43:18 \ \mu=2,39:1$	45	42:142:167:93
502		684	$40:18~\mu=2,22:1$	45	42:140:163:83
506	Ф Ф Ф	693	$47:20~\mu=2,35:1$	50	42:150:x:103
506	o O	703	$45:20~\mu=2,25:1$	45	45:157:x:102
520	o O	693	$47:20~\mu=2,35:1$	50	47:147:178:100
283	ď	570	$33:15\ \mu=2,20:1$	47	35:120:158:77
		neglectus (SARS)		50	53 · r · r · 117
58		826	$50:20~\mu=2,50:1$	52	53 : x : x : 117
58 58		826 826	$50:20 \ \mu = 2.50:1$ $52:23 \ \mu = 2.26:1$	63	53 : x : x : 117 57 : 188 : 232 : 92
58 58 58		826 826 760	$50: 20 \ \mu = 2,50:1$ $52: 23 \ \mu = 2,26:1$ $50: 22 \ \mu = 2,27:1$	63 55	53: x: x: 117 57: 188: 232: 92 53: 200: 237: 133
58 58 58 58		826 826 760 855	$50: 20 \ \mu = 2.50: 1$ $52: 23 \ \mu = 2.26: 1$ $50: 22 \ \mu = 2.27: 1$ $56: 23 \ \mu = 2.43: 1$	63 55 67	53: x: x: 117 57: 188: 232: 92 53: 200: 237: 133 67: 205: 242: 138
58 58 58 58 58		826 826 760 855 750	$50: 20 \ \mu = 2,50:1$ $52: 23 \ \mu = 2,26:1$ $50: 22 \ \mu = 2,27:1$ $56: 23 \ \mu = 2,43:1$ $43: 21 \ \mu = 2,05:1$	63 55 67 55	53: x: x: 117 57: 188: 232: 92 53: 200: 237: 133 67: 205: 242: 138 50: 170: x: 75
58 58 58 58 58 58		826 826 760 855 750 845	$50: 20 \ \mu = 2,50:1$ $52: 23 \ \mu = 2,26:1$ $50: 22 \ \mu = 2,27:1$ $56: 23 \ \mu = 2,43:1$ $43: 21 \ \mu = 2,05:1$ $50: 23 \ \mu = 2,17:1$	63 55 67 55 50	53: x: x: 117 57: 188: 232: 92 53: 200: 237: 133 67: 205: 242: 138 50: 170: x: 75 60: 187: 220: 125
58 58 58 58 58 58 58		826 826 760 855 750 845 893	$50: 20 \ \mu = 2,50:1$ $52: 23 \ \mu = 2,26:1$ $50: 22 \ \mu = 2,27:1$ $56: 23 \ \mu = 2,43:1$ $43: 21 \ \mu = 2,05:1$ $50: 23 \ \mu = 2,17:1$ $53: 22 \ \mu = 2,40:1$	63 55 67 55 50 57	53: x: x: 117 57: 188: 232: 92 53: 200: 237: 133 67: 205: 242: 138 50: 170: x: 75 60: 187: 220: 125 53: 167: 230: 80
58 58 58 58 58 58 58 62 99		826 826 760 855 750 845 893 779	$50: 20 \ \mu = 2,50:1$ $52: 23 \ \mu = 2,26:1$ $50: 22 \ \mu = 2,27:1$ $56: 23 \ \mu = 2,43:1$ $43: 21 \ \mu = 2,05:1$ $50: 23 \ \mu = 2,17:1$ $53: 22 \ \mu = 2,40:1$ $47: 20 \ \mu = 2,35:1$	63 55 67 55 50 57 64	53: x: x: 117 $57: 188: 232: 92$ $53: 200: 237: 133$ $67: 205: 242: 138$ $50: 170: x: 75$ $60: 187: 220: 125$ $53: 167: 230: 80$ $52: 184: 250: 93$
58 58 58 58 58 58 58 62 99		826 826 760 855 750 845 893 779 802	$50: 20 \ \mu = 2,50:1$ $52: 23 \ \mu = 2,26:1$ $50: 22 \ \mu = 2,27:1$ $56: 23 \ \mu = 2,43:1$ $43: 21 \ \mu = 2,05:1$ $50: 23 \ \mu = 2,17:1$ $53: 22 \ \mu = 2,40:1$ $47: 20 \ \mu = 2,35:1$ $55: 23 \ \mu = 2,39:1$	63 55 67 55 50 57 64 60	53: x: x: 117 57: 188: 232: 92 53: 200: 237: 133 67: 205: 242: 138 50: 170: x: 75 60: 187: 220: 125 53: 167: 230: 80 52: 184: 250: 93 52: 184: 230: 83
58 58 58 58 58 58 58 62 99	Primocyclops Pr	826 826 760 855 750 845 893 779	$50: 20 \ \mu = 2,50:1$ $52: 23 \ \mu = 2,26:1$ $50: 22 \ \mu = 2,27:1$ $56: 23 \ \mu = 2,43:1$ $43: 21 \ \mu = 2,05:1$ $50: 23 \ \mu = 2,17:1$ $53: 22 \ \mu = 2,40:1$ $47: 20 \ \mu = 2,35:1$	63 55 67 55 50 57 64	53: x: x: 117 $57: 188: 232: 92$ $53: 200: 237: 133$ $67: 205: 242: 138$ $50: 170: x: 75$ $60: 187: 220: 125$ $53: 167: 230: 80$ $52: 184: 250: 93$
58 58 58 58 58 58 62 99 126 126	9 9 9 9 9 9 9 9 9	826 826 760 855 750 845 893 779 802 807	$50: 20 \ \mu = 2,50: 1$ $52: 23 \ \mu = 2,26: 1$ $50: 22 \ \mu = 2,27: 1$ $56: 23 \ \mu = 2,43: 1$ $43: 21 \ \mu = 2,05: 1$ $50: 23 \ \mu = 2,17: 1$ $53: 22 \ \mu = 2,40: 1$ $47: 20 \ \mu = 2,35: 1$ $55: 23 \ \mu = 2,39: 1$ $55: 22 \ \mu = 2,50: 1$ $57: 22 \ \mu = 2,59: 1$	63 55 67 55 50 57 64 60 62	53: x: x: 117 $57: 188: 232: 92$ $53: 200: 237: 133$ $67: 205: 242: 138$ $50: 170: x: 75$ $60: 187: 220: 125$ $53: 167: 230: 80$ $52: 184: 250: 93$ $52: 184: 230: 83$ $58: 185: 234: 87$
58 58 58 58 58 58 62 99 126 126	Primocyclops	826 826 760 855 750 845 893 779 802 807 794	$50: 20 \ \mu = 2,50: 1$ $52: 23 \ \mu = 2,26: 1$ $50: 22 \ \mu = 2,27: 1$ $56: 23 \ \mu = 2,43: 1$ $43: 21 \ \mu = 2,05: 1$ $50: 23 \ \mu = 2,17: 1$ $53: 22 \ \mu = 2,40: 1$ $47: 20 \ \mu = 2,35: 1$ $55: 23 \ \mu = 2,39: 1$ $55: 22 \ \mu = 2,50: 1$ $57: 22 \ \mu = 2,59: 1$	63 55 67 55 50 57 64 60 62	53: x: x: 117 $57: 188: 232: 92$ $53: 200: 237: 133$ $67: 205: 242: 138$ $50: 170: x: 75$ $60: 187: 220: 125$ $53: 167: 230: 80$ $52: 184: 250: 93$ $52: 184: 230: 83$ $58: 185: 234: 87$
58 58 58 58 58 58 62 99 126 126 126	Primocyclops	826 826 760 855 750 845 893 779 802 807 794	$50: 20 \ \mu = 2,50: 1$ $52: 23 \ \mu = 2,26: 1$ $50: 22 \ \mu = 2,27: 1$ $56: 23 \ \mu = 2,43: 1$ $43: 21 \ \mu = 2,05: 1$ $50: 23 \ \mu = 2,17: 1$ $53: 22 \ \mu = 2,40: 1$ $47: 20 \ \mu = 2,35: 1$ $55: 23 \ \mu = 2,39: 1$ $55: 22 \ \mu = 2,50: 1$ $57: 22 \ \mu = 2,59: 1$ et Mrázek).	63 55 67 55 50 57 64 60 62 62	53: x: x: 117 $57: 188: 232: 92$ $53: 200: 237: 133$ $67: 205: 242: 138$ $50: 170: x: 75$ $60: 187: 220: 125$ $53: 167: 230: 80$ $52: 184: 250: 93$ $52: 184: 230: 83$ $58: 185: 234: 87$ $58: 184: 234: 87$
58 58 58 58 58 58 62 99 126 126 126	Prmocyclops	826 826 760 855 750 845 893 779 802 807 794 schmeili (POPPE	$50: 20 \ \mu = 2,50: 1$ $52: 23 \ \mu = 2,26: 1$ $50: 22 \ \mu = 2,27: 1$ $56: 23 \ \mu = 2,43: 1$ $43: 21 \ \mu = 2,05: 1$ $50: 23 \ \mu = 2,17: 1$ $53: 22 \ \mu = 2,40: 1$ $47: 20 \ \mu = 2,35: 1$ $55: 23 \ \mu = 2,39: 1$ $55: 22 \ \mu = 2,50: 1$ $57: 22 \ \mu = 2,59: 1$ et Mrázek).	63 55 67 55 50 57 64 60 62 62	53: x: x: 117 $57: 188: 232: 92$ $53: 200: 237: 133$ $67: 205: 242: 138$ $50: 170: x: 75$ $60: 187: 220: 125$ $53: 167: 230: 80$ $52: 184: 250: 93$ $52: 184: 230: 83$ $58: 185: 234: 87$ $58: 184: 234: 87$
58 58 58 58 58 58 58 62 99 126 126 126 126 126	Primocyclops	826 826 760 855 750 845 893 779 802 807 794 schmeili (Poppe 1.073 1.092	$50: 20 \ \mu = 2,50: 1$ $52: 23 \ \mu = 2,26: 1$ $50: 22 \ \mu = 2,27: 1$ $56: 23 \ \mu = 2,43: 1$ $43: 21 \ \mu = 2,05: 1$ $50: 23 \ \mu = 2,17: 1$ $53: 22 \ \mu = 2,40: 1$ $47: 20 \ \mu = 2,35: 1$ $55: 23 \ \mu = 2,39: 1$ $55: 22 \ \mu = 2,50: 1$ $57: 22 \ \mu = 2,59: 1$ et Mrázek). $117: 27 \ \mu = 4,33: 1$ $113: 27 \ \mu = 4,18: 1$	63 55 67 55 50 57 64 60 62 62	53: x: x: 117 $57: 188: 232: 92$ $53: 200: 237: 133$ $67: 205: 242: 138$ $50: 170: x: 75$ $60: 187: 220: 125$ $53: 167: 230: 80$ $52: 184: 250: 93$ $52: 184: 230: 83$ $58: 185: 234: 87$ $58: 184: 234: 87$ $78: 267: 337: 132$ $83: 264: 314: 140$

Furca s. ap. int. : s. ap. ext.	Art. 3 Enp. P4 longueur : largeur	Art. 3 Enp. P4 Ep. int. : ép. ext.	P5 Art. 2 Ép. : soie
2,36:1	$63:17 \ \mu = 3,70:1$	$73:22\ \mu=3,32:1$	
2,54:1	$59:17 \ \mu = 3,47:1$	$76:20~\mu=3,80:1$	
2,22:1	_	_	
2,60:1	$62:17 \ \mu = 3,65:1$	$77:22\ \mu=3,50:1$	
2,95:1	$50:14~\mu=3,57:1$	$53:17~\mu=3,12:1$	-
2,32:1	$45:16 \ \mu = 2.81:1$	$42:21 \ \mu=2,0:1$	$48:52 \mu = 0.92:1$
2,21:1	$44:15~\mu=2,93:1$	$37:20~\mu=1.85:1$	
2,21:1	$47:15 \ \mu = 3,13:1$	$40:18~\mu=2,22:1$	$40:50 \ \mu = 0.80:1$
1,98:1	19811234	_	
2,29:1	$48:17 \ \mu = 2.82:1$	$43:22 \ \mu = 1,95:1$	
2,27:1	$43:16 \ \mu=2,68:1$	$39:20~\mu=1,95:1$	
2,13:1			
2,22:1	42 : 12,5 μ = 3,36 : 1	$36:16,7\mu=2,15:1$	$33:37~\mu=0.89:1$
2,21:1	$53:18 \ \mu = 2,94:1$	$45:22~\mu=2,04:1$	$58:47 \ \mu = 1,23:1$
1,61:1	$59:20 \ \mu = 2,95:1$	$53:25 \ \mu = 2,12:1$	
2,51:1	$53:18~\mu=2.94:1$	$47:20 \ \mu = 2,35:1$	_
2,06:1		-X-1	- 3
1,50:1	and the second		
2,08:1	_		$53:42 \ \mu = 1,26:1$
1,51 : 1	$46:18 \ \mu = 2,55:1$	$45:21~\mu=~2,14:1$	_
1,79:1	$50:18~\mu=2.78:1$	$47:21~\mu=2,24:1$	-
1,59 : 1	$47:20~\mu=2,35:1$	$45:20 \ \mu = 2,25:1$	
1,50:1	$47:18 \ \mu = 2,61:1$	$43:21~\mu=2,05:1$	$47:58~\mu=0.81:1$
1,50 : 1	$44:19~\mu=2,32:1$	$42:20~\mu=2,10:1$	
1,69:1	$65:25~\mu=2,60:1$	$53:52~\mu=1,02:1$	$73:50 \ \mu = 1,46:1$
1,68:1	$63:23 \ \mu = 2,74:1$	$50:47~\mu=1,06:1$	$80:52~\mu=1,54:1$
1,56 : 1	$62:25~\mu=2,48:1$	$47:43~\mu=1,09:1$	
1,72 : 1	$58:24~\mu=2,42:1$	$47:42~\mu=1,12:1$	$80:52~\mu=1,54:1$
-	$55:18 \ \mu = 3,06:1$	$40:43 \ \mu = 0.93:1$	$60:40~\mu=1,50:1$

CARTE I.

Lac Tanganika. — Emplacements des stations où furent récoltés des Cyclopides.

CARTE II.

Lac Kivu. — Emplacements des stations où furent récoltés des Cyclopides.

and the state of t

Tableau de la répartition des Cyclopides connus du Continent africain au Sud du Tropique du Cancer.

	I Union Sud-Africaine	II Rhodésies	III Nyassa	IV Mozambique	V Afrique orientale britannique	VI Angola	VII Congo belge	VIII A.É.F.	IX Soudan égyptien	X Ethiopie	XI Caméroun	XII Togo	XIII Nigéria	XIV Côte de l'Or	XV Guinée portugaise	XVI A.O.F.
1. Oithona plumifera	CLEVE, 1904 O. plumifera			THOMPSON, 1900 O. plumifera		TH. Scott, 1894 O. plumifera		TH. SCOTT, 1894 O. plumifera	GIESBRECHT, 1896 O. plumifera					TH. Scott, 1894 O. plumifera		Тн. Scott, 1894 О. plumifera
2. Oithona setigera						TH. Scott, 1894 O. setigera	TH. Scott, 1894 O. challengeri						TH. Scott, 1894 O. setigera	TH. Scott, 1894 O. setigera		
3. Oithona similis	CLEVE, 1904 O. similis			THOMPSON, 1900 O. similis			? TH. Scott, 1894 O. challengeri (1)	? Th. Scott, 1894 O. challengeri					? Th. Scott, 1894 O. challengeri	? TH. Scott, 1894 O. challengeri		? TH. SCOTT, 1894 O. challengeri
4. Oithona brevicornis							(1)						Lindberg, 1951 O. brevicornis		Marques, 1950 O. brevicornis	
5. Oithona minuta	. CLEVE, 1904 O. nana								GIESBRECHT, 1896 O. nana							
6. Dioithona minuta						TH. Scott, 1894 O. minuta	TH. SCOTT, 1894 O. minuta									
7. Dioithona rigida	CLEVE, 1904 O. rigida								GIESBRECHT, 1896 O. rigida							
8. Macrocyclops albidus	Kiefer, 1934 M. albidus oligolasius	Kiefer, 1928 M. albidus oligolasius	SARS, 1909 C. albidus		Kiefer, 1939 M. albidus oligolasius	Kiefer, 1937 M. albidus oligolasius	VAN DOUWE, 1912 C. albidus	van Douwe, 1914 C. albidus	CHAPPUIS, 1922 C. albidus	Lowndes, 1930 Pach. annulicornis	Kiefer, 1927 M. albidus					Kiefer, 1933 M. albidus oligolasius
9. Eucyclops serrulatus	Kiefer, 1934 (²) E. serrulatus	SARS, 1909 C. agiloides	? DADAY, 1910 C. serrulatus		? Mrázek, 1898 C. serrulatus	KIEFER, 1937 E. agiloides	van Douwe, 1912 C. serrulatus		Daday, 1910 C. serrulatus	Lowndes, 1930 L. agiloides	KIEFER, 1927 E. agiloides					DE GUERNE et RICHARD, 1892 C. serrulatus
10. Eucyclops sublævis	RÜHE, 1914 C. serrulatus	Kiefer, 1934 E. sublævis					LINDBERG, 1951 E. cf. sublævis			Lowndes, 1930 L. sublævis						
11. Eucyclops euacanthus	Kiefer, 1929 E. cognatus	SARS, 1909 C. euacanthus			Kiefer, 1939 E. (s. str.) euacanthus	KIEFER, 1937 E. euacanthus					KIEFER, 1927 E. euacanthus					Kiefer, 1933 E. (s. str.) euacanthus
12. Eucyclops acanthoides								van Douwe, 1914 C. acanthoides								
13. Eucyclops semiserratus		Sars, 1909 C. semiserratus			Lindberg, 1951 E. semiserratus		LINDBERG, 1951 E. semiserratus									
14. Eucyclops lævimargo							LINDBERG, 1951 E. lævimargo									
15. Eucyclops crassispinosus		•			SARS, 1909 C. lævimargo											KIEFER, 1932 E. crassispinosus
16. Eucyclops stuhlmanni					Mrázek, 1898 C. stuhlmanni											
	,															

	I Union Sud-Africaine	II Rhodésies	III Nyassa	IV Mozambique	V Afrique orientale britannique	VI Angola	VII Congo belge	VIII A.É.F.	IX Soudan égyptien	X Éthiopie	XI Caméroun	XII Togo	XIII Nigéria	XIV Côte de l'Or	XV Guinée portugaise	XVI A.O.F.
17. Eucyclops echinatus (3)					KIEFER, 1939 E. (s. str.) echinatus	LINDBERG, 1950 E. echinatus	LINDBERG, 1951 E. echinatus									Kiefer, 1933 E. (s. str.) echinatus
18. Eucyclops angustus			Sars, 1909 C. angustus		SARS, 1909 C. angustus					-9						
19. Eucyclops parvicornis		HARDING, 1942 E. parvicornis												•		
20. Eucyclops spatharum		HARDING, 1942 E. spatharum														
21. Eucyclops rarispinus					SARS, 1909 C. rarispinus			,								
22. Eucyclops ciliatus		SARS, 1909 C. ciliatus														
23. Eucyclops nudus					KIEFER, 1935 E. (s. str.) nudus											
24. Eucyclops glaber					KIEFER, 1935 E. (s. str.) glaber											
25. Eucyclops van douwei										***	BREHM, 1909 C. van Douwei					•
26. Eucyclops fragilis											KIEFER, 1926 C. fragilis					
27. Eucyclops caparti					Lindberg, 1951 E. caparti		LINDBERG, 1951 E. caparti									
28. Eucyclops paucidenticulatus					LINDBERG, 1951 E. paucidenticulatus											
29. Afrocyclops gibsoni	BRADY, 1904 C. gibsoni	KIEFER, 1934 E. (s. str.) gibsoni			? VAN DOUWE, 1912 C. gibsoni		LINDBERG, 1951 A. gibsoni	·	CHAPPUIS, 1922 C. nubicus (4)	Lowndes, 1930 L. gibsoni			? BRADY, 1910 C. longistylis	? Graham et Brady, 1907 C. longistylis		KIEFER, 1933 E. (s. str.) gibsoni
30. Afrocyclops curticornis					KIEFER, 1939 E. (A.) curticornis	-									·	Kiefer, 1932 E. curticornis
31. Afrocyclops doryphorus					KIEFER, 1935 E. (A.) doryphorus		? VAN DOUWE 1912 C. gibsoni									
32. Afrocyclops propinquus																Kiefer, 1932 E. propinquus

Tableau de la répartition des Cyclopides connus du Continent africain au Sud du Tropique du Cancer.

	I Union Sud-Africaine	II Rhodésies	III Nyassa	IV Mozambique	V Afrique orientale britannique	VI Angola	VII Congo belge	VIII A.É.F.	IX Soudan égyptien	X Ethiopie	XI	XII	XIII Nigéria	XIV Côte de l'Or	XV Guinée portugaise	XVI A.O.F.
33. Afrocyclops lanceolatus					Kiefer, 1935 E. (A.) lanceolatus											
34. Afrocyclops alter					KIEFER, 1935 E. (A.) alter											
5. Afrocyclops (?) dubius (5)			Sars, 1909 C. dubius													
6. Tropocyclops prasinus (6)	? Kiefer, 1934 E. (T.) prasinus						Lindberg, 1951 T. prasinus					_				? DE GUERNE et RICHARD, 1 C. pentagonus
7. Tropocyclops onabamiroi													LINDBERG, 1950 T. onabamiroi			C. penuayonus
8. Tropocyclops confinis (7)	Sars, 1927 L. prasinus		? DADAY, 1910 C. prasinus		? Mrázek, 1898 C. prasinus	Kiefer, 1937 T. confinis	? van Douwe, 1912 C. prasinus		? Chappuis, 1922 C. prasinus	Lowndes, 1930 L. prasinus	? Brehm, 1909 C. prasinus		Lindberg , 1951 T. confinis	? GRAHAM et BRADY, 1907 C. virescens		KIEFER, 1933 E. (T.) confinis
9. Tropocyclops tenellus		Monti, 1931 C. tenellus			GURNEY, 1928 Mes. tenellus		Sars, 1909 C. tenellus									
). Tropocyclops varicoides														GRAHAM et BRADY, 1907 C. varicoides		KIEFER, 1933 E. (T.) varicoides
. Paracyclops fimbriatus (8)	Brady, 1904 C. fimbriatus				Poppe et Mrázek, 1894 C. fimbriatus	Lindberg, 1950 P. fimbriatus				Lowndes, 1930 Pl. fimbriatus						Kiefer, 1933 P. fimbriatus
2. Paracyclops fimbriatus poppei	Sars, 1927 Pl. poppei															21,700000000
. Paracyclops oligarthrus		Sars, 1909 C. oligarthrus			Sars, 1909 C. oligarthrus											
. Paracyclops affinis					Kiefer, 1939 P. affinis		LINDBERG, 1951 P. affinis		CHAPPUIS, 1922 C. affinis	Lowndes, 1930 Pl. affinis						? Kiefer, 1933 P. affinis ?
. Ectocyclops phaleratus	SARS, 1927 Pl. phaleratus		? Daday, 1910 C. phaleratus		? Mrázek, 1898 C. phaleratus				? Daday, 1910 C. phaleratus					? GRAHAM et BRADY, 1907 C. phaleratus		
. Ectocyclops rubescens	BRADY, 1904 Ec. rubescens	KIEFER, 1934 Ec. medius			Lowndes, 1933 Pl. rubescens	Kiefer, 1937 Ec. rubescens	LINDBERG, 1951 Ec. rubescens			LOWNDES, 1930 Pl. rubescens	Kiefer, 1927 Ec. phaleratus	Kiefer, 1939 Ec. rubescens				Kiefer, 1933 Ec. phaleratus et Ec. medius
. Ectocyclops hirsutus					Kiefer, 1939 Ec. hirsutus	Kiefer, 1937 Ec. hirsutus	LINDBERG, 1951 Ec. hirsutus	van Douwe, 1914 C. compactus	Chappuis, 1922 C. compactus							et Ec. medius Kiefer, 1933 Ec. compactus

 $^(^5)$ Cyclops dubius, description insuffisante. Forme ressemblant plutôt à un Afrocyclops qu'à un Eucyclops.

⁽⁶⁾ Kiefer, 1933, E. (T.) prasinus en A.O.F.: Un E. (T.) prasinus n'est pas mentionné sur le tableau récapitulatif des espèces, mais seulement sur la liste des stations. On ne peut par conséquent pas savoir si c'est cette espèce que Kiefer a voulu signaler ou l'E. (T.) prasinus meridionalis qui figure aussi sur le tableau.

l'E. (T.) prasinus meridionalis qui figure aussi sur le tableau.

E. (T.) prasinus meridionalis forme de l'Uruguay, décrite d'une façon insuffisante.

La mention de cette sous-espèce pour l'A.O.F. n'est accompagnée d'aucun détail.

E. (T.) parvus; même remarque que pour E. (T.) prasinus meridionalis. Il s'agit ici d'une espèce du Guatémala.

⁽⁷⁾ Tropocyclops confinis y compris T. confinis f. frequens. Cyclops pusillus Brady spec. incertæ sedis (peut-être : T. confinis).

⁽⁸⁾ Paracyclops fimbriatus y compris P. fimbriatus euchætus et P. finitimus.

Tableau de la répartition des Cyclopides connus du Continent africain au Sud du Tropique du Cancer.

	I Union Sud-Africaine	II Rhodésies	III Nyassa	IV Mozambique	V Afrique orientale britannique	VI Angola	VII Congo belge	VIII A.E.F.	IX Soudan égyptien	X Éthiopie	XI Caméroun	XII Togo	XIII Nigéria	XIV Côte de l'Or	XV Guinée portugaise	XVI A.O.F.
48. Ectocyclops compactus		Sars, 1909 C. compactus	~													
49. Ectocyclops coperes					GURNEY, 1928 P. coperes											
0. Megacyclops viridis					LOWNDES, 1931 C. vulgaris					Lowndes, 1930 C. vulgaris						
1. Megacyclops viridis latipes					Kiefer, 1939 C. (Meg.) gigas latipes		? LINDBERG, 1951 ? Meg. viridis latipes									
i2. Allocyclops chappuisi						C							*			Kiefer, 1932 Al. chappuisi
53. Bryocyclops elachistus					Kiefer, 1935 B. elachistus											
54. Bryocyclops difficilis					Kiefer, 1935 B. difficilis											
55. Bryocyclops phyllopus					Kiefer, 1935 B. phyllopus											
56. Bryocyclops apertus					Kiefer, 1935 B. apertus											
57. Bryocyclops africanus																Kiefer, 1932 B. africanus
58. Microcyclops varicans	RÜHE, 1914 C. varicans	SARS, 1909 C. varicans	Sars, 1909 C. varicans		Bourne, 1893 C. africanus	Kiefer, 1937 Mic. (s. str.) varicans	LINDBERG, 1951 Mic. varicans	van Douwe, 1914 C. varicans	Daday, 1910 C. varicans	LOWNDES, 1930 Cr. varicans	Kiefer, 1927 C. subæqualis		GURNEY, 1933 C. (Mic.) varicans			KIEFER, 1933 C. (Mic.) subæqual et C. (Mic.) varicar
59. Microcyclops jenkinæ					Lowndes, 1933 Cr. jenkinæ		LINDBERG, 1951 Mic. jenkinæ									
60. Microcyclops davidi					Lindberg, 1951 Mic. davidi				Chappuis, 1922 C. davidi et C. niloticus		Kiefer, 1927 C. davidi					Kiefer, 1933 C. (Mic.) davidi
61. Microcyclops elgonensis					KIEFER, 1932 C. (Mic.) elgonensis											
62. Microcyclops cunningtoni		SARS, 1909 C. cunningtoni			SARS, 1909 C. cunningtoni		SARS, 1909 C. cunningtoni									
33. Microcyclops pachycomus		SARS, 1909 C. pachycomus			? Lowndes, 1933 ? Cr. pachycomus				? CHAPPUIS, 1922 C. pachycornus							
4. Microcyclops crassipes	Sars, 1927 Cr. crassipes															

								Management of the second of th								
	I Walan Carl Africains	II .	III	IV	V Afrique orientale	VI	VII	VIII	IX	X	XI Caméroun	XII Togo	XIII Nigéria	XIV Côte de l'Or	XV Guinée portugaise	XVI A.O.F.
	Union Sud-Africaine	Rhodésies	Nyassa	Mozambique	britannique	Angola	Congo belge	A.É.F.	Soudan égyptien	Éthiopie	Cameroun	10g0	Nigoria	3000 40 7 07		
65. Microcyclops paraplesius					Kiefer, 1929 C. paraplesius											
66. Cryptocyclops bicolor linjanticus .	KIEFER, 1934 C. (Mic.) linjanticus	Kiefer, 1928 C. linjanticus			? DADAY, 1910 C. bicolor	Kiefer, 1937 Mic. (Cr.) linjanticus	LINDBERG, 1951 Cr. bicolor linjanticus		? CHAPPUIS, 1922 C. bicolor	Lowndes, 1930 Cr. bicolor			? Brady, 1910 C. bicolor			KIEFER, 1933 C. (Mic.) linjanticus
67. Cryptocyclops exiguus (9)		Sars, 1909 C. exiguus														
68. Cryptocyclops falsus											Kiefer, 1927 C. falsus	Kiefer, 1927 C. falsus		Graham et Brady, 1907 C. bicolor		Kiefer, 1933 C. (Mic.) falsus
69. Cryptocyclops attenuatus		SARS, 1909 C. attenuatus			GURNEY, 1928 Mic. attenuatus											
70. Cryptocyclops caudatus	SARS, 1927 Cr. caudatus															
71. Cryptocyclops tanganicæ					GURNEY, 1928 Mic. tanganicæ											
72. Cryptocyclops gemellus					GURNEY, 1928 Mic. gemellus											
73. Metacyclops minutus (10)	VAN DOUWE, 1912 C. diaphanus															
74. Metacyclops concavus (11)						Kiefer, 1937 Met. concavus				1						
75. Metacyclops necessarius	RÜHE, 1914 C. diaphanus						-									KIEFER, 1932 C. (Met.) tropicus
76. Metacyclops tropicus																
77. Metacyclops prolatus	:				KIEFER, 1935 C. (Met.) prolatus											KIEFER, 1932 C. (Met.) micropu
78. Metacyclops micropus																
79. Metacyclops planus									GURNEY, 1911 C. planus							
80. Mesocyclops leuckarti	BRADY, 1904 C. leuckarti	? Sars, 1909 C. leuckarti	Sars, 1909 C. leuckarti		Poppe et Mrázek, 1894 C. leuckarti	KIEFER, 1937 Mes. leuckarti et Mes. leuckarti æquatorialis	van Douwe, 1912 C. leuckarti	van Douwe, 1914 C. leuckarti	DADAY, 1910 C. leuckarti	Lowndes, 1930 Mes. obsoletus	KIEFER, 1927 Mes. leuckarti		BRADY, 1910 C. leuckarti	GRAHAM et BRADY, 1907 C. leuckarti		DE GUERNE et RICHARD, C. leuckarti

	I Union Sud-Africaine	II Rhodésies	III Nyassa	IV Mozambique	V Afrique orientale britannique	VI Angola	VII Congo belge	VIII A.E.F.	IX Soudan égyptien	X Éthiopie	XI Caméroun	XII Togo	XIII Nigéria	XIV Côte de l'Or	XV Guinée portugaise	XVI A.O.F.
81. Mesocyclops major	SARS, 1927 Mes. major					•					F +W					
82. Mesocyclops tenuisaccus	Sars, 1927 C. tenuisaccus				? LOWNDES, 1936		LINDBERG, 1951 Th. hyalinus	? van Douwe, 1914 C. oithonoides var. hyalina			? Kiefer, 1927 Mes. hyalinus		LINDBERG, 1950 Th. hyalinus			KIEFER, 1933 Mes. (Th.) hyalinus
83. Thermocyclops hyalinus	SARS, 1913 Mes. crassus	102/	SARS 1909	Kiefer, 1929	? LOWNDES, 1936 C. hyalinus SARS, 1909 C. neglectus	Kiefer, 1937 Th. neglectus	? SARS, 1909 C. neglectus	var. hyalina		? Lowndes, 1930 Mes. neglectus (part.)			LINDBERG, 1951 Th. neglectus			DE GUERNE et RICHARD, 1892 C. hyalinus var.
84. Thermocyclops neglectus	SARS, 1927 Mes. neglectus	KIEFER, 1934 Mes. (Th.) neglectus	SARS, 1909 C. neglectus	Mes. (Th.) neglectus	C. neglectus	Kiefer, 1937 Th. decipiens	KIEFER, 1927 Mes. hyalinus									KIEFER, 1933 Mes. (Th.) decipiens
85. Thermocyclops decipiens	Kiefer, 1929				VAN DOUWE, 1912 C. oithonoides part.	Kiefer, 1937 Th. infrequens				? Lownes, 1930 Mes. neglectus (part.)						
87. Thermocyclops consimilis	Mes. (Th.) infrequens			KIEFER, 1934 Mes. (Th.) consimilis	Mrázek, 1898 C. oithonoides var.	Kiefer, 1937 Th. consimilis	LINDBERG, 1951 Th. consimilis									
88. Thermocyclops pachysetosus							LINDBERG, 1951 Th. pachysetosus				77					
89. Thermocyclops schuurmanæ	. Kiefer, 1928 Mes. schuurmanæ				? VAN DOUWE, 1912 C. oithonoides f. a		? VAN DOUWE, 1912 C. oithonoides f. 2									
90. Thermocyclops macracanthus	Kiefer, 1929 Mes. (Th.) macracanthus					Kiefer, 1937 Th. macracanthus	? VAN DOUWE, 1912 C. oithonoides f. B									
91. Thermocyclops retroversus	Kiefer, 1929 Mes. (Th.) retroversus				VAN DOUWE 1019	Kiefer, 1937 Th. retroversus	Th. retroversus				3-40		LINDBERG, 1951 Th. inopinus			
92. Thermocyclops inopinus					VAN DOUWE, 1912 C. oithonoides part.					•	00					
93. Thermocyclops oblongatus	SARS, 1927 Mes. oblongatus	Kiefer, 1928	DADAY, 1910 C. emini	KIEFER, 1934	POPPE et MRÁZEK, 1894 C. emini	Kiefer, 1937 Th. emini	VAN DOUWE, 1912 C. emini	VAN DOUWE, 1914 C. emini	GURNEY, 1911 C. emini							
94. Thermocyclops emini	Kiefer, 1928 Mes. emini	KIEFER, 1928 Mes. emini	C. emini	Mes. (Th.) emini	U. Circuito											KIEFER, 1932 Mes. (Th.) incisus
96. Thermocyclops nigerianus																KIEFER, 1932 Mes. (Th.) nigerianus
97. Thermocyclops schmeili					POPPE et MRÁZEK, 1894 C. schmeili	. 7/	Lindberg, 1951 Th. schmeili									

Fig. 1. — Tembwe, la rive au fond de la baie. (St. 15).

Fig. 2. — Kolobo, vue de la côte au Sud du village ; région en face de la station 351 bis.

Fig. 3, — Edith Bay, vue générale du Sud de la baie et du Cap Kibwesa (St. 33).

Fig. 4. — Etang de Kaluwe, sur la crête de la presqu'île d'Ubwari (St. 253).

Fig. 5 — Ujiji, la rizière au Nord du chemin de la plage (St. 58).

Fig. 6. — Marais-mares Kalumbe, à 10 km au sud d'Albertville.

RÉGION DU LAC TANGANIKA.

K. LINDBERG. — Cyclopides.

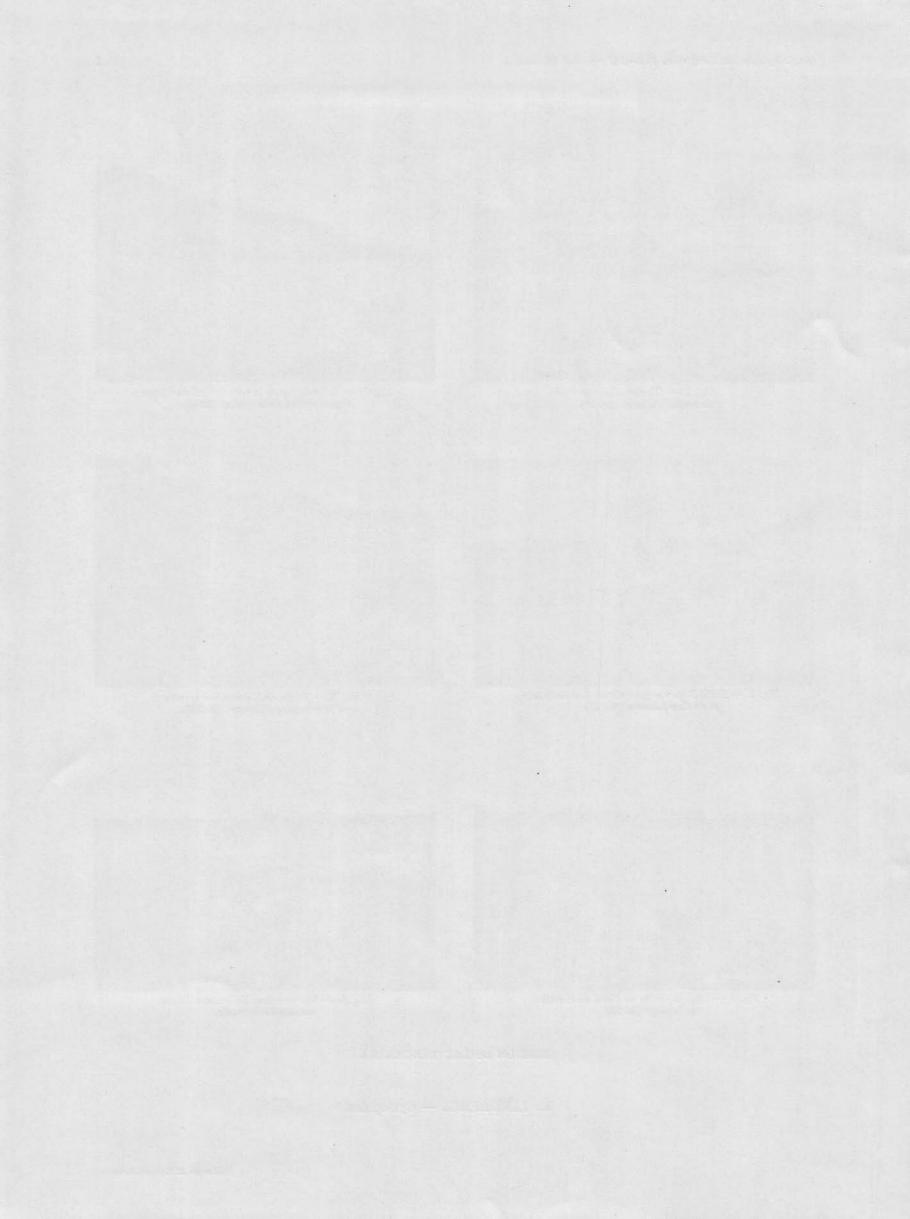


Fig. 1. — Extrémité sud du lac et la Ruzizi au pont-route (St. 283).

Fig. 2. — Extrémité sud du lac, devant Shangugu, vue du pont-route (St. 502).

Fig. 3. — Katana ; la rive du lac devant la FOMULAC (St. 506).

Fig. 4. — Katana, étang de barrage (St. 509).

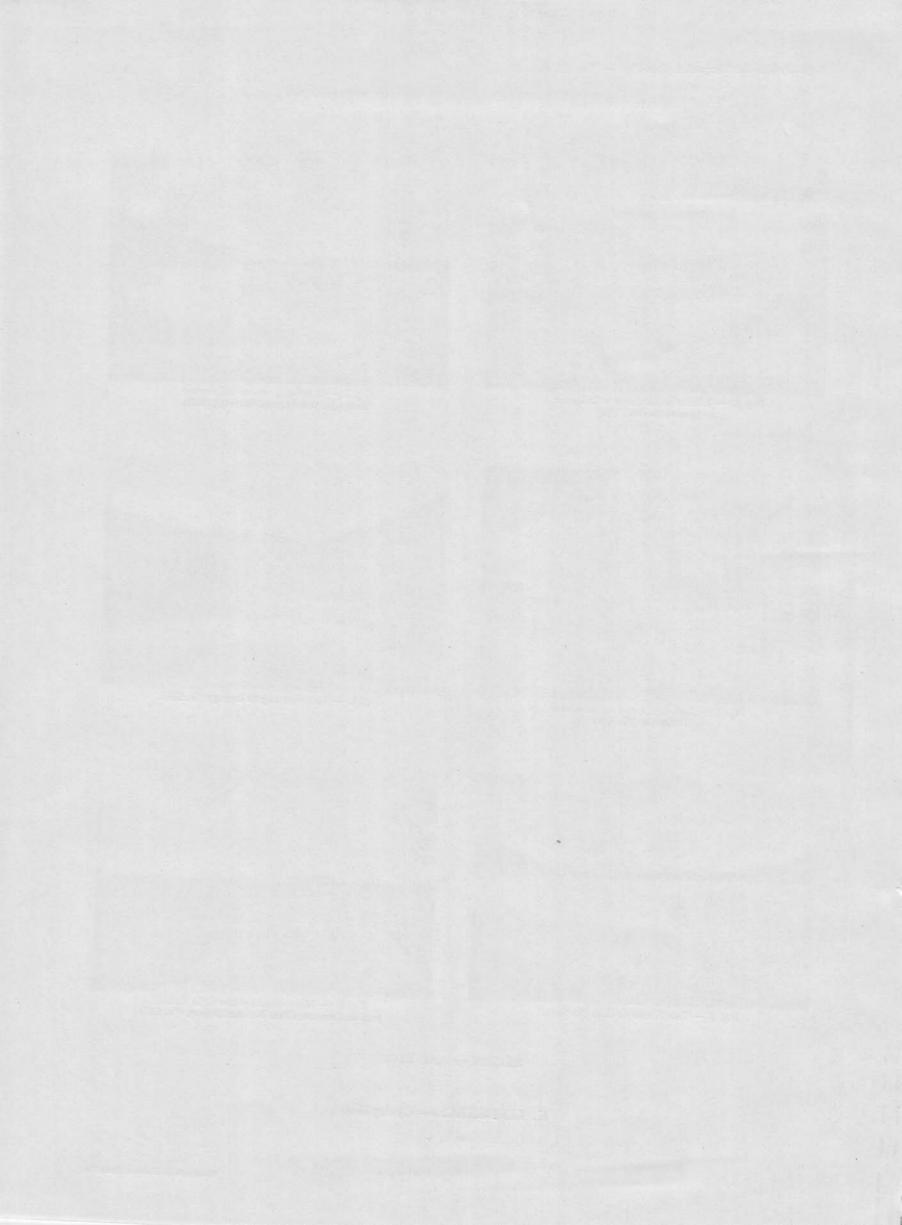

Fig. 5. — Baie fermée de Sake (St. 518).

Fig. 6. — Mare dans la plaine de la Ruindi, près de Kamande (Parc National Albert) (St. 535).

RÉGION DU LAC KIVU.

K. LINDBERG. — Cyclopides.

