GEOPHYSICAL CHARACTERIZATION OF LITHOLOGIES FROM THE BRABANT MASSIF AS A CONTRIBUTION TO GRAVIMETRIC AND MAGNETIC MODELLING

by

W. DE VOS¹, B. POOT², J. HUS³, M. EL KHAYATI³

ABSTRACT

Density and magnetic susceptibility measurements have been carried out on 62 samples from most lithological types of the Brabant Massif. They provide the necessary parameters for geophysical modelling.

The saturated bulk density of in situ groundwater saturated rocks was calculated from measurements of the dry weight, the solid volume by immersion in chlorothene, and the total volume by immersion in mercury; these also allow the calculation of open pore volume, grain density and bulk density.

The Ordovician and Silurian mudstones and turbidites show small variation around the average of 2.74 (saturated bulk density). The Cambrian Tubize and Oisquercq formations show a large range from 2.52 to 2.82, mainly due to porosity variation. Igneous rocks vary from 2.64 to 2.77, with a pyrite-rich exception (2.99).

From the figures no clear interpretation of the gravity maps can be deduced. In particular, the negative gravimetric Bouguer anomaly Ardooie-Geraardsbergen cannot be explained by the subcrop density pattern, increasing the likelihood of a light batholith at depth.

The susceptibility figures confirm the heterogeneity of the Tubize formation, which remains the chief magnetic unit. A diorite was discovered to be strongly magnetic, contrasting with the usually low susceptibility of the other igneous rocks; it influences the interpretation of the Geraardsbergen area.

KEY WORDS

Brabant Massif, magnetic susceptibility, rock density, petrophysics, gravity modelling, magnetic modelling.

1. INTRODUCTION

Without deep drilling data on the Brabant Massif, its deep geological structure is still a matter of speculation. Many drill cores from the upper part of the Massif are available, however, and kept at the Belgian Geological Survey lithotheque.

As magnetic and gravimetric maps exist over the whole Brabant Massif, they allow geophysical modelling to complement direct observation in order to build a threedimensional model. Geophysical modelling requires the introduction of two key parameters of each rock type; mass density and magnetic susceptibility. The aim of this paper is to present some data on measurements carried out on a wide variety of lithological types of the Brabant Massif. The measurements were made on 62 plugs from 55 core samples from 49 different boreholes, listed in table 1.

¹ Belgische Geologische Dienst, Jennerstraat 13 - B-1040 Brussels.

² Fina Research, now Petrofina S.A., Rue de l'Industrie 52 - B-1040 Bruxelles.

³ Centre de Géophysique du Globe. B-5670 Dourbes.

Viiliditq suz		γίιεπэΩ		Porosity Density		Lithology Por		Stratigraphic unit	Depth	Locality	Borehole
Alua	K	aas	Grain	Bulk	%	· · · · · · · · · · · · · · · · · · ·					
151	324	<i>TET.2</i>	2.803	107.2	3'64	banded turbidite	¥	ilobir¶ nsiruli2	m 2,Edi	Kekkem	LL 396
135	555	2.718	208.2	1/9.2	69'7	banded turbidite	V	Silurian Pridoli	(119v)m EEdl	Kekkem	<i>LL</i> 396
ш	505	35 <i>L</i> .2	5.806	167.2	L9.2	gray-brown claystone	V	Silurian Ludlow	u 091	Bellegem	5983L6
135	795	L81.2	2.836	092.2	69.2	gray slate	V	wolbu-I-InsW.li2	w 919	ollaM	57E148
£11	563	384.2	2.753	2.333	12.21	gray comp. siltst. + py	V	Sil. Wenlock	m 8,742	Zevekote	36E139
76	<i>L</i> \$7	57746	6LL°Z	2.732	27.1	gray slate	V	Sil. Llandovery	m 1,222	Kortrijk	124W28
153	340	7114	208.2	5 <i>1</i> .2	1.52	gray siltstone	Is	Wenl-Ludlow	u 8,912	Langemark	0LE99
132	295	2.753	<i>9LL</i> .2	07/70	0£.1	gray lamin. turbidite	Is	Sil. Wenlock	u 025	Houtem	20E133
551	873	591.2	5 <i>LL</i> .2	LST.2	08'0	banded turbidite + py	Is	Sil. Llandovery	m 192	Steenkerke	20E134
561	£75	<i>7.112</i>	38 <i>L</i> .2	5.763	16.0	banded turbidite + py	Is	Silurian Llandov.	(119v)m 192	Steenkerke	20E134
121	338	7.804	7.817	96 <i>L</i> .2	<i>†L</i> .0	gray laminated siltst.	Is	Silurian	u 92EI	Booischot	29E146
120	198	575.2	161.2	L04.2	SL'EI	gray laminated phyll.	V	Middle Ord. to Sil.	w 952	tlsiT	69II89
504	155 -	5775	2.825	001.2	177	bluish gray siltst.	Is	Ord. Caradoc	m 4,052	Schore	26E137
911	916	5 ^{.746}	0 <i>LL</i> .2	££7.2	1'3¢	gray laminated siltst.	Is	Ord. Arenig-Lland.	m 274	Beerzel	29E145
171	855	207.2	191.2	899.2	3:32	gray turbidite	Is	Ord. Tremadoc ?	w 7,761	St. Goriks	82E963
SSI	LI7	077.0	2.820	569.2	777	banded sandy unbid.	Įs	Ord. Tremadoc ?	m 9,721	Mater	L6LMS8
133	098	07 <i>L</i> .2	2.814	869.2	11.4	banded sandy turbid.	Is	Ord. Tremadoc ?	(nov)m 0,721	Mater	L6LMS8
<i>L</i> 6	652	569.2	2°108	7'89'7	88'0	gray quartzite	ss	Ord. Caradoc	(m 188-228)	Settinge	LIIE9E
811	350	5°200	2.720	507.2	\$9.0	gray quartzite + py	SS	Ord. Caradoc	(330 m3)	Leffinge	JUI 39EIIL
121	115	L89.2	167.2	629.2	08.2	gray mudstone	۲	9 Ordovician ?	m 28,022	Keiem	36E138
124	341	LST.2	£67.2	5,131	2.03	gray slate	₩ ¥	S raiovician ?	m 9,221	Heverlee	89E363
546	E99	5°,186	2.820	7 <i>LL</i> .2	£ <i>L</i> .1	laminated turbidite	Is	S naiovician ?	m 19,EIE	Kruishoutem	98EIM78
12	55	5.624	5.655	909.2	<i>L</i> 8'I	gray quartzite	SS	Cambrian Jodoigne	w 582	Gijzegem	11E726
12	55	5.643	2.658	5:635	<i>L</i> 8'0	gray quartzite	SS .	Cambrian Jodoigne	285 m(vett)	Gijzegem	11E726
38	103 E	5.683	50 <i>L</i> .2	019.2	82.I	stay quarts phyllite	SS	Cambrian Jodoigne	u LLZ	Aartenslinde	095ME6
<i>L</i> 61	115	5.673	108.2	209.2	01.7	greenish siltstone	¥	Cambr. Oisquercq	m 2,022	Sturvekenskerke	SZIWIZ
851	ELE	7254	218.2	395.2	88 . 21	greenish siltstone	V	Cambr. Oisquercq	ш 5, 742	Kaaskerke	TTIMIS
9/I	017	LIL.2	7.804	699.2	78.4	greenish siltstone	V	Cambr. Oisquercq	w 5,242	Klerken	21EI24
6 <i>L</i> I	LLヤ	SIL.2	118.2	1997	5 .34	green phyllite	¥	Cambr. Oisquercq ?	m E,841	Еке	ZSLMOL
781	554	5.618	968.2	005.2	<i>L</i> 8.11	green to purple phyll.	V	Cambr. Oisquercq	w 9'ZZI	Iddergem	L92798
150	867	595.2	<i>L</i> 8 <i>L</i> .2	144.2	15.45	green to purple mudst.	V	Cambr. Oisquercq	w es	Octingen	100E9
	215	1096	508.5	2.488	11.24	green to purple mudst.	V V	Cambr. Oisquercq	(pəusələnu-br)	Octingen	100E9

Aunomdoosne		Viensity		Porosity	Lithology	sboO	Stratigraphic unit	Depth	Locality	Borehole	
Alua	K	aas	Luis T.D.	7108	%		· .		- -		
WDG		aac		Wing							
071	CTE	0252	502 C	VVV C	95 61	tetlie Imme of neede	^و ا ا	Data Circle Total	un 0 000	ahaomahaad	PSIMLS
791	7+0	1 285 6	618 6	2576	96 61	green no purpi, sinst.	[³	Cambr Oisquered	u \$ 691	Mortegen	SLVIMV8
96	350	589 6	VVLC	159 6	CV 2	Ercon-pupic attach	l ^o	batauparo : rouno		Machalon	C(+T ++-0
ELI OC	SLV CC7	COO'7	8686	ICO'Z	OL C	Steen any quarkpuy u.	L ³	Cambrion, Oisquerd	(~ CSC 00C)	Internets	50C/ML9
	505	808 6	070'7	67/7	6/7	Righ clown comp. suise.	1 ³ 19	I BAN IIBHOHIBO	(III 707-607)	19081C	
051		008 6	0286	5186	69:0		41 19	I BAN IIBRIOINBO	W 900	+2[c A	
081		079.7	1 208 6	00L C	221 CC0		13	I BAN IIBHOIND		1818A	
1321	595 C	LS9 C	170.7	185 0	09 L CC'T	Righ promo oprilite		I BVA RETOINE	ш с'сот	Surger of the state	66111300 (13+0
616	905	109 6	L18 C	181 6	00"/		1º 12	Cambridge Tubiza		Noverencerg	SULTING
717	070	SEL C	102 6	104.7	01 C		16	Salut Incromed	111 / 7/7	SISTER	OCCALL
981 000'C	515	CCUT	80LC	89L C	41'C		10	Salut Inchance	111 007 I	1191911944	OCT MT/
0.021		9256	0617	2012		711gnb + allousius uaala	IS	Sampred T name		Insergence	0+CM/9
211 7/1	CT+	009 0	989 0	0150	76.71	anoispine asince mark	SS	Szron T nardans	ш с'/17	ന്ടുലംപ്പ	USCALL
905 8	C60'T	9720	090.7	90L C		Success coarse sance	55	Szron T naroma	ш 6'707	V IIETZEIE	0001/1100 007 M T/
950 L	800 01	982 6	05LC	CCL C	10.2	coarse sandy shale	55	SZIOU T INBRIOUND	ш со'+от	Loekeloerg	60CT M 00
050.1	909	1196	601.7	771.7	10 / to /		SS	Szrou i fikitomic)	ш с'т7	Tellocek	6007011
607	060	1+0.2	<i>LVLC</i>	V85 C	10.4	Indepted + augmented	SS	SZIOU I MELIOMIS	ш т'от	Silbri Srodo 2	7/07011
101		SEL C	8520	toC'7	te 1	borbult			ш себотт	Scione	101300
971		CSL C	29L C	SVLC	290 701	bothiyi				Cietal Verein	CCLTOC
		8826	1520	1266	£L0	porphy + purite			u 2007	Talato Internetide	LSMES
8	16	9LL C	68L C	09LC	£20 C/10	ante + vinte				Tichtervelde	LSMES
17	179	686.2	3.005	1867	28.0	Dirich + Dirice			110,014 m(vert)	Jichtervelde	LSMES
<u>79</u>	081	289.2	102.2	629.7	62.0	decific nombury			017.9 m	Roeselare	671329
SS	147	876.2	069.2	5.672	89.0	comp. fine-er. porph.			m 161	Deerliik	83F403
66	192	2.653	207.2	579.2	2.88		ţ.		u 871	Warerem	29EIM78
981	S612	817.2	2.818	7.664	L4.2	fine grained tuff	.		ш 9 <u>5</u>	Goeferdinge	66E674
15.354	34 211	STT.2	387.2	691.2	09'0	magnetic diorite	· ·		m 21.96	Geraardsbergen	91W001
153	338	6 <i>LL</i> .2	018.2	792.2	77.1	compact conglomerate		nsinovoG olbbiM	1246 m	Booischot	941W62
611	930	187.2	2.810	591.2	19.1	compact conglomerate		Middle Devonian	1246 m(vert)	Booischot	941W62
								•			

Table 1. List of samples and geophysical values. Lithology codes: A argillite, al sultatone, as sandstone; py: pyrite. (vert) after depth indication means the plug was cored vertically. SBD saturated bulk density in g/cm³. Volume susceptibility K in SL10⁻⁶ units, mass susceptibility in m³/kg x 10⁻⁹.

Figure 1a. Plot of saturated bulk density versus porosity. For individual samples.

Lithologies (number of samples)	Porosity (%)	Bulk density (g/cm ³)	Grain density (g/cm ³)	Permeability (md)
Porphyry (11)	2.00	2.718	2.773	0.01 (n=2)
Siltstone (22)	3.65	2.700	2.802	0.03 (n=5)
Diorite (1)	0.60	2.769	2.786	
Sandstone (9)	3.30	2.619	2.709	1.06 (n=1)
Argillite (17)	7.56	2.589	2.800	0.08 (n=4)
Chalk (1)	33.25	1.808	2.708	
Conglomerate (2)	1.66	2.763	2.810	

Table 2. Average petrophysical analysis results.

2. DENSITY MEASUREMENTS

Porosity, bulk and grain density were measured at the petrophysical laboratory of Fina Research on cylindrical plugs of 23 mm diameter, cored preferentially horizontally from the drill core block. A few plug samples were obtained by coring vertically in the same block, for comparison. Cleaning of samples was performed by solvent extraction in a soxhlet; first with methanol to clean the salt off, until chlorides no longer precipitate from the effluent methanol when tested with Ag NO₃, and followed by chlorothene (1,1,1 thrichloroethane) for cleaning hydrocarbons until no more brown coloration of the solvent is observed after one night of immersion. The maximum working temperature is 70°C. Porosity calculation is based on estimates of the total and solid volumes of the plugs using the immersion method, which determines the open porosity:

- 1. Weighing of dried samples (Wdr).
- 2. Saturation by chlorothene under vacuum.

3. Solid volume (Vs) calculated from weight of saturated sample immersed in chlorothene (Wim) according to :

Vs = (Wdr-Wim)/density of fluid.

4. Sample saturation under 250 bars pressure and determination of solid volume after pressurization.

- Total volume (Vt) calculated from weight of chlorothene saturated sample immersed in mercury (Whg) according to: Vt = Whg/mercury density.
- 6. Porosity calculation : porosity = (Vt Vs)/Vt.

Conventional density values are calculated at follows: bulk density = Wdr/Vt grain density = Wdr/Vs.

A saturated bulk density (SBD) for use in gravimetric modelling is calculated using a water density value of 1.001 g/cm^3 for complete saturation of the pore volume: SBD = bulk density + (porosity x water density). The results appear in table 1.

Table 2 shows average petrophysical results according to purely lithological criteria. The distinction between siltstone and argillite is based on visual macroscopic inspection only. Permeability measurements expressed in millidarcy, carried out on twelve selected plug samples, are shown for comparative purposes only and will not be further discussed. The average grain density is above 2.8 for argillites, siltstones and conglomerate, around 2.7 for sandstones, and intermediate for igneous rocks.

Note the low open porosity in igneous rocks (porphyry and diorite), and the relatively large porosity in argillite, which decreases its average bulk density. One Cretaceous chalk sample was analyzed for comparison.

3. MAGNETIC SUSCEPTIBILITY MEA-SUREMENTS

The magnetic susceptibility of the cylindrical plugs was measured at the Centre de Géophysique du Globe. It was obtained in a weak alternating field of 80 Am⁻¹ at 970 Hz, with a Kappabridge KLY-1, with a precision of 4.10^{-8} SI.

The magnetic susceptibility is determined by measuring the inductivity change of the pick-up coil caused by insertion of the sample. In the Kappabridge the pick-up coil is supplemented with an auxiliary compensation coil to balance the bridge purely by electrical means with a devider, without any mechanical disturbance of the pick-up coil. The transfer factor of the devider for attaining balance is a linear function of the change of pick-up coil inductivity.

The bridge is calibrated in SI units for a sample of 8 cm^3 . In the lowest ranges, to allow for a linear temperature drift, the bridge is balanced five times at regular intervals.

Usually the bulk susceptibility is obtained by averaging the three measurements obtained along three perpendicular sample axes. As the samples have a large length to diameter ratio only a single reading along the axial direction could be taken.

Before their measurement, the samples were oven-dried at 50°C for at least 48 hours in order to obtain their dried weight. The dried weight was used to obtain the specific or mass susceptibility in SI units expressed in m^3Kg^{-1} . The volume of the samples was calculated on the basis of this dried weight and of the bulk density determined by Fina Research.

The volume susceptibility K in SI units is calculated with the following relation :

$$K = \frac{8}{V} \Theta = \frac{8}{m} d.\Theta$$

Where : V = sample volume in cm³, m = sample mass in g, Θ = reading, d = bulk density in g/cm³ The volume susceptibility in SI units is dimensionless.

The low-field susceptibility which is the ratio of the induced magnetization to the intensity of the magnetizing field depends on the nature (chemical composition), concentration, effective grain size and shape of the magnetic minerals present. If magnetite is the dominant magnetic phase, the susceptibility is generally a measure of its concentration.

The results appear in table 1.

4. GEOLOGICAL UNITS

Table 1 lists the results according to broad geological units. It gives a brief description of each sample, including a lithological code argillite, siltstone, sandstone to outline broad categories for density and porosity interpretation.

For modelling purposes, it is important to define homogeneous geological formations. The formations building up the Brabant Massif are described in detail by De Vos *et al.* (1993) and can be summarized as follows:

The *Tubize group* (s.l.) includes phyllite, siltstone and fine to coarse sandstone with variable feldspar content. This formation is characterized by its chlorite content, greenish colour and frequent magnetite-bearing horizons. Its age is late Precambrian (?) to early Cambrian.

The **Oisquercq group** contains mostly greenish to purplish phyllites and siltstones, without stratification and without magnetite. The lower part, called Rva 1 by Legrand (1968) is made up of brownish to greyish siltstone or mudstone. Its age is early to middle Cambrian.

The *Jodoigne formation* consists of grey quartzites and quartz phyllites. Its age is middle or upper Cambrian.

The Ordovician rocks consist of grey turbiditic sequences, most typically in the Tremadoc, with a high proportion of massive mudstones and siltstones in the Caradoc and Ashgill, and quartzitic intercalations in the Caradoc.

unit (number of samples)	grain den- sity	SBD	porosity %	volume sus- ceptibility K x 10 ⁻⁶	observation
Silurian argillite (5)	2.805	2.750	3.08	326	without 36E139
Silurian siltstone (5)	2.792	2.774	1.06	357	
Ordovician arg. + siltst. (8)	2.799	2.738	3.40	413	without 68E169
Ordovician quartzite (2)	2.714	2.701	0.76	289	
Jodoigne quartzite (3)	2.673	2.650	1.34	71	
Oisquercq argillite (7)	2.808	2.630	9.58	417	
Oisquercq siltstone (4)	2.791	2.638	8.49	367	
Oisquercq Rva 1 (4)	2.827	2.802	1.39	448	
Tubize arg. + siltst. (4)	2.800	2.693	5.94	5.070	
Tubize sandstone (5)	2.743	2.652	5.26	6.352	
Porphyry without pyrite (6)	2.727	2.691	2.04	330	
All volcanic rocks (10)	2.772	2.737	2.00	241	incl. 53W57, 99E974
Diorite (1)	2.786	2.775	0.61	34.211	

Table 3. Average values per lithological unit and type.

The Silurian consists of grey turbiditic sequences and mudstones. Most rocks in the Ordovician and Silurian have been dated by microfossils, in contrast to Cambrian rocks where lithological criteria have to be used to determine the stratigraphical position.Porphyritic rocks are rhyolitic to dacitic in composition, and generally upper Ordovician in age. One diorite sample is included.

A middle Devonian conglomerate is also included, from the rim of the Kempen basin overlying the Brabant Massif to the northeast.

5. DISCUSSION OF RESULTS

The density features of the investigated samples are illustrated in figure 1. Porosity is plotted against saturated bulk density (SBD) which is the density value to be used for gravimetric modelling. In fig. 1 a, different symbols and letters are used for different lithologies and stratigraphic subdivisions. In fig. 1 b the fields of the stratigraphic units have been delineated. Average values are listed in table 3 per lithological unit and type.

Saturated bulk density is determined by grain density and porosity, a relationship clearly visible on fig. 1. Some lithological units are rather homogeneous, others show a widely varying SBD due to porosity variation; this is especially the case for the Oisquercq group.

Sandstones, quartzites and porphyritic rocks generally plot to the lower left of the diagram because of their low grain density. The quartzitic Jodoigne formation has an average SBD of 2.65, a quartzitic intercalation in the Caradoc 2.70. These units are clearly distinguished on the plot.

SBD figures for the Silurian vary between 2.71 and 2.80, the argillites showing slightly smaller SBD because of higher porosity (see table 3 and fig. 1). For the Ordovician, a variation between 2.68 and 2.79 is

observed. Two argillites of this stratigraphic range, one Silurian and one Ordovician, have exceptionally high porosity and were left out of the average calculation. The reason for the high porosity is as yet unknown but could be related to a type of alteration, although the rocks look fresh. The Middle Devonian conglomerate plots in the middle of the Silurian samples (fig. 1) suggesting that most of the rounded shale pebbles building them up are of Silurian origin.

The rocks of the Cambrian Oisquercq group have a porosity varying between 3.4 and 15.9% and a grain density between 2.78 and 2.84 (one sample from Machelen is lighter, see table 1). The corresponding SBD value varies between 2.52 and 2.72, which makes it rather speculative to assign a value for modelling purposes. The lowermost unit of the Oisquercq group called Rva1, is represented by four samples characterized by a very high grain density (2.827 on average), low porosity (1.39%) and high resulting SBD (2.80); they plot on the upper left in fig. 1.

The Tubize group, like the Oisquercq group, shows a wide range of SBD values. Its grain density varies from 2.686 in a coarse sandstone to 2.817 in fine siltstone. The porosity varies from 1.07 to 12.92%. The average SBD is 2.65 for sandstones and 2.69 for siltstones, which is slightly higher than for the Oisquercq group. The magmatic rocks generally have a low porosity, but the variation in grain density causes a large spread in SBD values. The relationship of petrographical and chemical composition to grain density has not been investigated and deserves further study in a systematic way in all the volcanic occurrences of the Brabant Massif. Pyrite increases the grain density, as exemplified in the Lichtervelde borehole, where a grain density value above 3 was recorded. When no pyrite is present, a good estimate of the average SBD of most porphyritic rocks is 2.69 (table 3). This is much lower than for Rva1 mudstones, Ordovician and Silurian argillites and siltstones, but higher than for sandstones and quartzite facies, higher than the average Oisquercq group, and similar to the abundant fine-grained facies of the Tubize group. The diorite from Geraardsbergen has very low porosity and a rather high density (resultant SBD of 2.775).

The interpretation of the magnetic susceptibility figures is more straightforward than of the density figures.

Most sedimentary rocks cluster around volume susceptibility values of 0.0003 to 0.0005 SI, which seems to be the background for fine-grained detrital sediments containing negligible magnetite (see tables 1 and 3). Coarse-grained rocks have even lower values; the Jodoigne quartzite has an average value of 0.00007 SI. The porphyritic rocks with high pyrite content at Lichtervelde show susceptibility values as low as 0.00001 SI. Most magmatic rocks have low values, close to the general background.

One notable exception is the diorite at Geraardsbergen, with a moderately high volume susceptibility of 0.034 SI. It shows on the magnetic maps as an elongated body of about 4 km long oriented NNW-SSE. It was described by Corin (1965) as a fine-grained rock with doleritic texture and acidic plagioclase (10% An).

The main lithological unit with a magnetic susceptibility above background is the Tubize group. It contains many magnetite-bearing horizons, both coarse- and fine-grained, alternating with non-magnetite bearing ones. As a result, its magnetic properties are heterogeneous, as can be deduced from table 1. Volume susceptibility varies from 0.0004 to 0.0192 SI with no relation to facies. Averages of 0.0050 and 0.0063 SI were computed for fine-grained rocks and sandstones respectively (table 3).

6. CONCLUSIONS FOR GEOPHYSICAL MODELLING

From the present knowledge it may be concluded that the magnetic anomalies in the Brabant Massif area can be explained mainly by the extension and inner structure of the Tubize group. It appears necessary however to propose the presence of some layers with a magnetic susceptibility that is much higher than hitherto measured, in the order of 0.05 to 0.1 SI. Indeed, in a trial modelling (Chacksfield et al., 1993) a hypothetical value of 0.02 SI had to be introduced as an average for the magnetic body constituting the core of the Brabant Massif. The present average of 0.006 SI (table 3) is too low. A magnetic volcano-sedimentary core in the central axis of the Brabant Massif is not excluded. The presence of occasional volcanic rocks and of arkosic horizons of possible volcanic origin, points in that direction (De Vos et al., 1993).

The occurrence of more magnetic intrusive bodies of the Geraardsbergen type is not excluded along the southern margin of the Brabant Massif.

The measured density values offer many possibilities for modelling work on the observed gravity field. The positive areas seem to correspond mainly to Ordovician and Silurian fine-grained sediments. Most other field correspondences are speculative at the moment, and a lot more trial modelling should be done.

The density figures obtained close to the subcrop of the Paleozoic rocks under its Cretaceous cover fail to explain the negative gravimetric anomaly in the southwest of the Brabant Massif. A density contrast of at least 0.05 with the surrounding rocks is necessary to explain the anomaly (Chacksfield *et al.*, 1993), which is not provided by the known volcanic rocks occurring in the volcanic arc showing the same WNW trend south of the anomaly. It is therefore necessary to postulate the presence of a light granitic batholith at depth, as has been proposed in the past (Legrand 1968; De Meyer 1983, 1984; André 1991).

Finally, it should be observed that not all facies types of the Brabant Massif have been analyzed for their geophysical characteristics. The Cambrian Mousty formation and several Ordovician formations defined in the outcrop area (Herbosch *et al.*, 1991) have not been studied. Also a thorough analysis of the magmatic rocks seems necessary. New sedimentological data may also lead to refining the stratigraphy. It is therefore recommended to continue this work on available borehole and outcrop samples.

REFERENCES

- ANDRE, L., 1991 Guidebook to the excursion on the stratigraphy and magmatic rocks of the Brabant Massif, Belgium, 2. Caledonian magmatism. Ann. Soc. Géol. Belg., 114/2: 315-323.
- CHACKSFIELD, B., DE VOS, W., D'HOOGE, L., DUSAR, M., LEE, M., POITEVIN, C., ROYLES, C. & VERNIERS, J., 1993 - A new look at Belgian aeromagnetic and gravity data through image-based display and integrated modelling techniques. *Geological Magazine*, Cambridge, **130**(5): 583-591.
- CORIN, F., 1965 Atlas des roches éruptives de Belgique. Mém. Service Géol. Belg., 4, 190 p.
- DE MEYER, F., 1983 Gravity interpretation of the western flank of the Brabant Massif. *Konin. Meteorologisch Inst. België*, Publicaties serie A/111: 1-34.
- DE MEYER, F., 1984 Two structural models for the western flank of the Brabant Massif. *Geophys. Prospect.*, 32: 37-50.
- DE VOS, W., VERNIERS, J., HERBOCH, A. & VANGUESTAINE, M., 1993 - A new geological map of the Brabant Massif, Belgium. *Geological Magazine*, Cambridge, 130(5): 605-611.
- HERBOSCH, A., LOUWYE, S., SERVAIS, T., VAN GROOTEL, G., VANGUESTAINE, M. & VERNIERS, J., 1991 - Guidebook to the excursion on the stratigraphy and magmatic rocks of the Brabant Massif, Belgium, 1. Lower Palaeozoic stratigraphy and sedimentology in the Thyle and Sennette valleys. *Ann. Soc. Géol. Belg.*, **114**/2: 283-314.

LEGRAND, R., 1968 - Le Massif du Brabant. Mém. Service Géol. Belg., 9, 148 p.

Manuscript received on 24.02.1993 and accepted for publication on 9.03.1993.