Annales des Mines de Belgique

COMITÉ DIRECTEUR

- MM. J. LEBACOZ, Directeur général des Mines, à Bruxelles, Président.
 - G. RAVEN, Ingénieur en chef-Directeur des Mines, à Bruxelles, Secrétaire.
 - J. Swolfs, s/Directeur à l'Administration centrale des Mines, Secrétaire-adjoint.
 - H. Hubert, Inspecteur général honoraire des Mines, Professeur émérite à l'Université de Liége.
 - O. LEDOUBLE, Inspecteur général des Mines, à Mons.
 - V. LECHAT, Inspecteur général des Mines, à Liége.
 - L. Demaret, Ingénieur en chef-Directeur des Mines, à Mons.
 - Ed. Libotte, Ingénieur en chef-Directeur des Mines, à Charleroi.
 - L. Legrand, Ingénieur en chef-Directeur des Mines, Professeur à l'Université de Liége.
 - A. HALLEUX, Ingénieur en chef-Directeur des Mines, Administrateur de l'Ecole des Mines et de métallurgie (Faculté technique du Hainaut).
 - V. Firket, Ingénieur en chef-Directeur des Mines, à Liége.
 - L. Denoël, Ingénieur en chef-Directeur des Mines, Professeur d'exploitation des Mines à l'Université de Liége.
 - Em. Lemaire, Ingénieur en chef-Directeur des Mines, Directeur de l'Institut National des Mines, à Frameries, Professeur à l'Université de Louvain.
 - P. Fourmarier, Ingénieur principal des Mines, Professeur à l'Université de Liége, Membre correspondant de l'Académie royale des Sciences, Membre du Conseil géologique de Belgique.
 - A. Renier, Ingénieur en chef-Directeur des Mines, Chef du service géologique de Belgique, Chargé de cours à l'Université de Liége.
 - Ad. Breyre, Ingénieur en chef-Directeur des Mines, Chargé de cours à l'Université de Liége.
 - A. Delmer, Ingénieur en chef-Directeur des Mines, Professeur à l'Université de Liége.

I a collaboration aux Annales des Mines de Belgique est accessible à toutes les personnes compétentes.

Les mémoires ne peuvent être insérés qu'après approbation du Comité Directeur. En décidant l'insertion d'un mémoire, le Comité n'assume aucune responsabilité des opinions ou des appréciations émises par l'auteur.

Les mémoires doivent être inédits.

Les Annales paraissent en 4 livraisons respectivement dans les mois de Janvier, Avril, Juillet et Octobre de chaque année.

Abonnement pour 1922 { pour la Belgique : 30 fr. par an. pour l'Étranger : 40 fr. par an.

Pour tout ce qui regarde les abonnements, les annonces et l'administration en général, s'adresser à l'Éditeur, Imprimerie Gaston LOUIS, chaussée d'Ixelles, 349, à Ixelles-Bruxelles.

Pour tout ce qui concerne la rédaction, s'adresser au Secrétaire du Comité Directeur, rue Guimard, 16, à Bruxelles.

MÉMOIRES

CARTE GÉNÉRALE

ET

Abornements des Concessions minières

DU

BASSIN DE LA CAMPINE

PAR

M. DEHALU

Professeur à l'Université de Liége.

(3me Suite) (1)

Description des points de deuxième ordre munis de signation ou repères permanents.

- 1 et 2. Bornes en héton, au nord des bureaux du siège de Sainte-Barbe (Limbourg-Meuse), marquent les extrémités d'une base de 600 mètres qui avait servi de départ à des levés antérieurs. Son azimut est 359° 18′ 48″.
- S. H. Signal métallique de Heiwick. A 1600 mètres environ à l'E. de la ferme de Heiwick sur la croupe au sud du ruisseau de Kikbeek (côte 95 mètres.)
- S. S. Signal métallique de Sutendael. A 4 kilomètres au N. de Sutendael dans une vaste bruyère et à 1200 mètres à l'E.-N.-E. de la borne kilométrique n° 4 de la route de Bilsen à Asch.
- S. A₁. Signal métallique d'Asch. Etabli approximativement à l'emplacement de la tour d'observation, à 1200 mètres au N. des Puits n° 1 et n° 2 d'André Dumont-sous-Asch, au lieu dit « *Dyksee* ».
- S. A₂. Signal métallique. A 2 kilomètres environ à l'E. des Puits n° 1 et n° 2 d'André Dumont-sous-Asch et à 250 mètres au N.-W. de la borne kilométrique n° 1 de la route de Bilsen à Asch.

⁽¹⁾ Voir Annales des Mines de Belgique. — Tome XXII, 1re et 2me livraison. — Tome XXIII, 1re livraison.

Le plan nº 1 visé dans cette 3^{me} suite du mémoire de M. Dehalu, accompagnera la 4^{me} suite.

- S. A₃. Signal métallique. A 1600 mètres au N.-W. du clocher de Genck et à 1400 mètres au S.-S.-W. des Puits n° 1 et n° 2 de la concession de Winterslag sur la crête à l'W. du Stimerbeek, à 500 mètres au N. du chemin de fer de Hasselt à Maeseyck, au lieu dit « Vosse Berg. » (côte 77 mètres.)
- S. A₄. Signal métallique. A 1200 mètres du précédent sur la crête au N. du chemin de fer de Hasselt à Maesyck et à 500 mètres du kilomètre 12,5 de celui-ci.
- S. L. Borne en béton au rez du sol, centre marqué par un tube de fer. Sur une éminence à 600 mètres au N.-E. des puits n° 1 et n° 2 de la concession des Liégeois, est la borne d'orientation du charbonnage. (Voir point suivant.)
- 178. Borne en béton au rez du sol, centre marqué par un tube de fer. Au sommet d'une butte (côte 86 mètres), à 700 mètres à l'W. du point précédent et à 400 mètres au N. des Puits n° 1 et n° 2 des Liégeois, peut également servir de station d'orientation. L'azimut de la ligne S. L. 178 est 271° 36′ 28″.
- S. G. Signal métallique de Gestel. A l'W. du chemin de Genck à Gestel et à environ 2500 mètres au N. de Eikenberg Cottage.
- S. B. Signal métallique du Bolderberg. A 1200 mètres à l'W. du clocher de l'église de Bolderberg sur la colline du même nom.
- S. F. Signal métallique de Fonteinje. A 1 kilomètre à l'E. du village de Fonteinje et à 2800 mètres environ à l'W. de la borne n° 56 de la route de Hasselt à Bois-le-Duc.
- S. V. Signal métallique de Voort. A 1 kilomètre environ au N.-N.-W. des Puits n° 1 et n° 2 de Helchteren-Zolder sur une butte (côte 55 mètres.)
- S. W. Signal métallique de Witten. A 300 mètres au N.-W. de l'intersection de la route de Hasselt à Bois-le-Duc et du chemin de fer de Hasselt à Eindhoven au N. de Helchteren, au sommet d'une dune.
- 230. Borne en béton au rez du sol, tube de fer au centre. Est située dans l'alignement des centres des deux Puits nº 1 et nº 2 de Helchteren-Zolder, à 250 mètres à l'W. du Puit nº 1, et a été établie pour servir de station d'orientation en visant le centre de la borne C, repère des Puits, située à 414^m,57 à l'W. de la précédente dans le même alignement, dont l'azimut est 276° 31' 27".
 - 191. Borne en béton au rez du sol, tube en fer au centre. A

550 mètres au N.-W. des Puits n° 1 et n° 2 de Beeringen, est destinée à servir de station d'orientation en visant l'un des clochers de Pael, Beverloo ou Beeringen.

Bornes-repères pour l'implantation des Puits.

Ces bornes généralement en béton et munies au centre d'un tube en fer de 3 centimètres de diamètre furent implantées jusqu'au ras du sol. Elles servirent à assurer le centrage rigoureux des puits et leurs positions furent déterminées par des triangulations auxiliaires rattachées à la triangulation primaire.

Limbourg-Meuse. — Neuf bornes-repères ont été établies pour les puits n° 1 et n° 2 : les repères n° 1, 4 et 8 dans l'alignement passant par les centres des deux puits, le repère n° 1 à mi-distance (45 mètres) de ceux-ci; les repères n° 5, 6 et 7 et n° 2, 3 et 9 sur des parallèles au premier alignement.

André-Dumont. — Onze repères dont les n°s 1, 2 et 3 sur une parallèle à la droite joignant le centre des deux puits n°s 1 et 2. Le centre du premier se trouve à l'intersection des droites joignant les repères 4-5 et 5-7; le centre du second est à la rencontre des alignements menés de 8 vers 10 et de 9 vers 11.

Liègeois. — Sept repères ont servi au centrage des puits n° 1 et n° 2. Les repères B, D et F sont situés dans l'alignement des centres des deux puits à 50 mètres de distance de chacun d'eux; les repères A, G et E, C se trouvent sur deux parallèles au premier alignement, menées à 50 mètres de distance de celui-ci.

Cette disposition des repères est très avantageuse.

Winterslag. — Quatre repères seulement ont été prévus : les trois premiers sur une parallèle à la droite passant par les centres des deux puits et le quatrième sur cette droite mème.

Helchteren. — Quatre bornes a. b, c et 230 furent plantées exactement dans l'alignement passant par les centres des deux puits.

Beeringen. — Le centrage du puits n° 1 était assuré par trois repères a, b et c, ce dernier situé dans l'alignement des centres des puits n° 1 et n° 2 et les deux autres a et b sur une perpendiculaire à cet alignement menée par le centre du puits n° 1.

Bornes de concession.

Des bornes en pierre de taille d'un modèle uniforme pour tout le bassin de la Campine furent établies aux sommets des angles de la Concession ou dans leur voisinage immédiat.

Elles ont (fig. 16) la forme d'un tronc de pyramide à quatre faces de 0^m,70 de hauteur et de 0^m,50 de côté à la base. La partie enfouie dans le sol a 37 à 48 centimètres de hauteur et 50 centimètres de

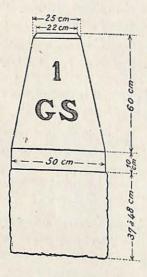


Fig. 16.

côté; elle repose sur une fondation en béton de 30 à 40 centimètres d'épaisseur avec laquelle elle fait entièrement corps.

La stabilité de ces bornes est donc parfaitement assurée et leur enlèvement ou leur déplacement a été rendu aussi difficile qu'il était possible.

Sur les faces sont marquées par des entailles dans la pierre les initiales des concessions et les numéros d'ordre correspondants.

Les positions de ces bornes ont été fixées par des levés auxiliaires rattachés à la triangulation primaire ; on en trouvera tous les détails dans la seconde partie de ce travail.

Bornes de sondages.

Les emplacements d'un certain nombre d'anciens sondages ont été repérés sur le terrain par des bornes spéciales d'un type également uniforme pour tout le bassin de la Campine. Une vue côtée en est représentée (fig. 17), Elles sont de forme rectangulaire et ont été

Fig. 17.

fixées au béton dans le sol. La partie qui en émerge, a 40 centimètres de haut. Sur une des faces se trouvent indiqués le numéro d'ordre du sondage et les initiales de la concession.

Les coordonnées de ces bornes ont été calculées par des opérations de rattachement à la triangulation primaire.

FIN DE LA PREMIÈRE PARTIE.

SECONDE PARTIE

Calcul de la triangulation de 1er ordre. Compensation des figures (1).

Quadrilatère I II III IV.

1re APPROXIMATION.

$$\begin{array}{c} c_1 = 8 + 1 + 2 + 3 - 180^{\circ} = -10''.8 \\ c_2 = 2 + 3 + 4 + 5 - 180 = -18.3 \\ c_5 = 4 + 5 + 6 + 7 - 180 = -2.6 \\ c_4 = 6 + 7 + 8 + 1 - 180 = +5.5 \\ \text{V\'erification } c_1 + c_3 = c_2 + c_4 = -12''.8 \end{array}$$

Angles	Valeurs observées	Correc- tions	lg sin.	$\frac{\Delta \lg}{\sin/1}$	Δε	Correc- tions pour les côtés	Valeurs corrigées
1	110 10' 01".8	- 2".4	9.2870416	106.6	11363.56		110 09' 55".5
2			9.4655956	69.0			16 59 13 .2
	103 44 16 .2			5.1	26.01		103 44 20 .9
4	44 58 19 .6	THE RESERVE		21.1	445.21		44 58 22 .1
5	14 18 01 .7			82 6	6822.76		14 18 04 .3
6	17 05 00 4		3,13,13,14,1	68.5	4792.25	+ 2 .5	17 04 59 .4
8	103 38 35 .7			5.1	26.01	+0.2	103 38 34 .6
	48 06 27 .6		13710001	18.9	357.21	+ 01,7	48 06 29 .8
	3600 — 12".8	+ 12".6	$\begin{array}{ccc} 6547596 & 6546570 \\ D = 1026 \end{array}$		28494.01 $q = 27.8$		

2º APPROXIMATION.

$$c_1 = -0''6$$
, $c_2 = +0''5$, $c_3 = +0''4$, $c_4 = -0''7$
 $c_1 + c_3 = c_2 + c_4 = -0''2$

Angles	Corrections des angles	log	sin	Correc- tions pour les côtés	Valeurs définitives
1 2 3	+ 0"3 - 1 + 1	0032 3923	6122	+ 0"1	110 09' 55".9
4 5 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7282 5700	2783 9933	+ 0"1	16 59 13 .1 103 44 21 .0 44 58 21 .9 14 18 04 .1
8			8116		17 04 59 .6 103 38 34 .5 48 06 30 .1
	+ 0"2	6937 D =	6954	q=1676	4

Quadrilatère I II IV VI.

1re APPROXIMATION.

$$\begin{array}{c} c_1 = 8 + 1 + 4 + 3 - 180^\circ = + 13''.4 \\ c_2 = 2 + 3 + 4 + 5 - 180^\circ = + 5''.9 \\ c_3 = 4 + 5 + 6 + 7 - 180^\circ = + 6''.6 \\ c_4 = 6 + 7 + 8 + 1 - 180^\circ = + 14''.1 \\ \text{V\'erification } c_1 + c_3 = c_2 + c_4 = 20'' \end{array}$$

Angles	Valeurs observées	Correc- tions	lg sin	$\frac{\Delta}{\lg \sin/1}$	Δ^2	Correc- tions pour les côtés	
1	620 37' 53".6	- 4".5	9.9484416	10.9	118.81	- 0".2	620 37' 48".9
2	103 38 35 .7	- 1 .4	9.9875745	5.1	26.01	- 0 .1	103 38 34 .2
3	8 52 34 5	- 3 .3	9.1883238	134.9	18198.01	- 2 .1	8 52 29 .1
4	36 05 53 .4	- 0 .7	9.7702390	28.9	835.21	+ 0 .4	36 05 53 .1
5	31 23 02 .3	- 0.5	9.7166439	34.5	1190.25	- 0 .5	31 23 01 .3
6	72 14 32 .1	- 3.6	9.9787962	6 7	44.89	+ 0 .1	72 14 28 .6
7	40 16 38 .8	- 1 .7	9.8105573	24.9	620.01	- 0 .4	40 16 36 .7
8	4 51 09 .6	- 4.3	8.9272318	248 0	61504.00	+ 3 .8	4 51 09 .1
	360° 20"0	_ 20 .0	6639666 6638415 D = 1251	1	82537.19 $q = 66$	1"	1"

2me et 3me approximations.

$$\begin{array}{llll} c_1 = 1''.3, & c_2 = -2''.3 & c_1 = +0''.2, & c_2 = -0''.5 \\ c_3 = -0''.3, & c_4 = +3''.3 & c_3 = -0''.2, & c_4 = +0''.5 \\ c_1 + c_3 = c_2 + c_4 = 1'' & c_1 + c_3 = c_2 + c_4 = 0 \end{array}$$

Angles	Corrections	log sin	Correc- tions pour les côtés	Correc tions	log sin	Valeurs définitives
1	-1".3	4398		-0".2	4376	620 37' 47".4
2	+0 .8	5698		+0 2	5699	103 38 35 .5
3	-0 .1	2941	-0".4		2887	8 52 28 .0
4	+0 .5	2416	+0 .1	+0 .1	2422	36 05 53 .8
5	+1 .0	6466	-0 .1	+0 .2	6500	31 23 02 .
6	-1 .1	7956		-0 .2	7955	72 14 27 .:
7	-0 .2	5558	-0 1		5533	40 16 36
8	-0 .8	3062	+0 .7	-0 .1	3211	4 51 08 .9
	${-1}$.2	9363 9132 D=231 q=35		0	6296 6287 D=9 q=9171	

349

Quadrilatère I II III VI.

11e APPROXIMATION.

$$\begin{array}{c} c_1 = 8 + 1 + 2 + 3 - 180^{\circ} = -12''.0 \\ c_2 = 2 + 3 - 4 + 5 - 180^{\circ} = -19''.6 \\ c_3 = -4 + 5 + 6 - 7 - 180^{\circ} = -13''.4 \\ c_4 = 6 - 7 + 8 + 1 - 180^{\circ} = -5''.8 \\ c_1 + c_3 = c_{\circ} + c_4 = -25''.4 \end{array}$$

Angles	Valeurs observées	Correc- tions	1g sin	$\frac{\Delta \lg}{\sin / 1''}$	Δ^2	Correc tions pour les côtés
1	160 07' 00".0	+ 0".5	9.4434140	72.8	5299.84	+1".0
2	28 09 04 .0	+ 5.7	9.6737791	39.3	1544.49	-0.5
3	112 36 43 .4	+ 3.8	9.9652593	8.7	75.69	-0 .1
4	8 52 34 .5	_ 4 .3	9.1883103	134.8	18171.04	-1 .8
5	48 06 27 .6	+ 5.8	9.8718177	18.9	357.21	+0.2
6	145 37 03 .1	+ 0.7	9.7518268	30.7	942.49	+0.4
7	4 51 09 .6	— 2 .6	8.9272740	248.0	61504.00	+3.3
8	23 07 00 .7	+ 2 0	9.5939688	49.3	2430.49	-0.7
	360° — 25",4	+25.4	$\begin{array}{ccc} 2077650 & 2078850 \\ D = 1200 \end{array}$		$ \begin{array}{c} $	

2me APPROXIMATION.

$$c_1 = -0''2, \quad c_2 = +1''.5.$$

 $c_3 = -0''9. \quad c_4 = -2''.6.$
 $c_1 + c_3 = -1''1, \quad c_2 + c_4 = -1''1.$

Angles	Corrections des angles	log sin	Correc- tions pour les côtés	Valeurs définitives
1	+ 0".9	4278	4 15	16° 07′ 02″.4
2	- 0 .7	7744		28 09 08 .5
3	- 0 .2	2596		112 36 46 .9
4	.0	2860		8 52 28 4
5	- 0 .6	8169		48 06 33 .0
6	+ 0 .9	8228		145 37 05 .1
7	— 0 .5	3434	+ 0"1	4 51 09 .9
8	+ 0 .3	9668	U.I.	23 07 02 .3
	- - 1 .1	8477 8500 D = 3927 $q = 23$		

Quadrilatère I III IV VI.

1re APPROXIMATION.

$$\begin{array}{c} c_1 = 8 + 1 + 2 + 3 - 180^{\circ} = -22''.8 \\ c_2 = 2 + 3 + 4 + 5 - 180 = -17 .4 \\ c_3 = 4 + 5 + 6 + 7 - 180 = + 6 .3 \\ c_4 = 6 + 7 + 8 + 1 - 180 = + 0 .9 \\ \text{V\'erification } c_1 + c_3 = c_2 + c_4 = -16''.5 \end{array}$$

	Angles	Valeurs observées	Correc- tions	lg sin	∆lg sin/l"	∇_5	Correc- tions pour les côtés	Valeurs corrigées
	1	27° 16′ 49.″0	+ 0".4	9.6611929	40.8	1664.64	- 0".6	270 16' 48''.8
	2	16 59 04. 2	+7.3	9.4656012	69.0	4761	+1.0	16 59 12 .5
	3	112 36 43. 3	+8.7	9.9652550	8.8	77.44	+ 0 .1	112 36 52 .1
	4	36 05 53. 4	_ 2 .2	9.7702347	28.9	835.21	+0.4	36 05 51 .6
	5	14 18 01. 7	+ 3 .7	9.3928224	82.6	6822.76	-1.2	14 18 04 .2
-	6	89 19 32. 4	_ 3 .2	9.9999699	0.3	9	0	89 19 29 .2
	7	40 16 38. 8	_ 4 .5	9.8105503	24.9	620.01	- 0 .3	40 16 34 .0
	8	23 07 00. 7	+ 6.4	9.5939905	49.3	2430.49	+ 0 .7	23 07 07 8
		360° — 16".5	+16 .6	8298206 8297963 D = 243		77211.64 $q = 71.1$	+ 0 .1	+ 0 2

2me APPROXIMATION.

$$c_1 = +1''.2, c_2 = +0''.4, c_3 = -1''.0, c_4 = -0''.2$$

 $c_1 + c_3 = c_2 + c_4 = +0''.2$

Angles	Corrections		log sin		Correc- tions pour les côtés	Valeurs définitives					
1	- 0".0	1900			- 0".1	.270	16' 48".7				
2	_ 0 .3	-		6060	+ 0 .1	16	59 12 .3				
3	_ 0 .5	2546				112	36 51 .6				
4	+ 0 .3		1	2367	+ 0 .1	. 36	05 52 0				
5	0	8125			- 0 .1	14	18 04 .1				
6	+ 0 .2	*		9699		89	19 29 .4				
7	+ 0 .4	5505			The state of	40	16 34 .4				
8	- 0 .4			9920	+ 0 .1	23	07 07 .5				
-	0 .3	8076 D = 3	30 q	8046 = 573	+ 0 .1	3600	0				

Quadrilatère II III IV VI.

1re APPROXIMATION.

$$\begin{array}{c} c_1 = 8 + 1 + 2 + 3 - 180^{\circ} = + 13''.7 \\ c_2 = 2 + 3 - 4 + 5 - 180 = + 3 .1 \\ c_3 = 4 + 5 + 6 - 7 - 180 = - 19 .1 \\ c_4 = 6 - 7 + 8 + 1 - 180 = - 8 .5 \\ c_1 + c_3 = c_2 + c_4 = - 5''.4 \end{array}$$

Angles	Valeurs observées	Correc- tions	lg sin	Δlg sin/l"	∇_{s}	Correc- pour les côtés	Valeurs corrigées
1	160 07' 00".0	+ 0".8	9.4434161	72.8	5299.84	+ 5".1	160 07' 05".9
2	11 10 01 .8	- 3 .5	9.2871365	106.6	11363.56	-7.3	11 09 51 .0
3	89 19 32 .4	- 6 .2	9.9999698	0.3	0.09	0	89 19 26 .2
4	72 14 32 .1	- 6 .1	9.9787945	6.7	44.89	- 0 .5	72 14 25 .5
5	151 45 01 .0	+ 0 .5	9.6751487	39.2	1536.64	- 2 .7	151 44 58 .8
6	145 37 03 .1	+4.9	9.7518139	. 30.8	948.64	+ 2 .1	145 37 10 .1
7	45 07 51 .1	- 7.5	9.8504589	20.9	436.81	+1.4	45 07 45 .0
8	63 23 39 5	- 4 .7	9.9513858	10.5	110.25	- 0 .7	63 23 34 .1
	- 5 .4	+ 5 .4	9689935 9691407 D = 1372		q = 14.4		- 4.4

2e APPROXIMATION

3e APPROXIMATION

4e APPROXIMATION

Angle	Correc- tions	lg sin	côtés	tions des	lg sin	Correc- tions pour les côtés	tions des	lg sin	Correc- tions pour les côtés
1 2 3 4 5 6 7 8	$ \begin{vmatrix} -2 & .1 \\ +3 & .4 \\ +1 & .7 \\ -1 & .2 \\ +3 & .2 \\ -2 & .3 \\ +0 & .6 \\ -0 & .1 \\ \hline +4 & .4 \end{vmatrix} $	8145	+2'.6 -3.8 0.0 -0.2 -1.4 +1.1 +0.7 -0.4	+1.8	4488 0736 9698 7928 1465 8148 4652 3845 0303 0676 D=373 q=65.1	+1".1 -1 .6 +0 .0 -0 1 -0 .6 +0 .5 +0 .3 -0 .2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	539 646 698 926 461 148 680 843 358 583	+0".9 -1 .3 0 -0 .1 -0 .5 +0 .4 +0 .2

5me APPROXIMATION.

Angles	Correc- tions des angles	lg sin		Correc- tions pour les côtés		Valeurs définitives
1	_ 0".5	4585		+ 0".4	- 0".2	160 07' 07".0
2	+ 0 .6		0539	- 0 .5	+ 0 .2	11 09 50 .2
3	+ 0 .3	9698			+ 0 .1	89 19 29 .6
4	_ 0 .2		7923		_ 0 .1	72 14 22 .7
5	+ 0 .6	1465		- 0 .2	+ 0 .2	151 45 02 .4
6	_ 0 .5	No. of the	8151	+ 0 .2	- 0 .2	145 37 07 .7
7	+ 0 .1	4656		+ 0 .1	0.0	45 07 47 .5
8	_ 0 1		3841		0.0	63 23 33 .1
	5, 1	D = 50 q =	≟ 385			

Tableau résumant les valeurs définitives des angles de la figure I II III IV VI.

Quadrila	tères	100			T			8				A n	g	les										
Triangles			I				1				11				IV	V.9			VI			Ern	de	
I II III	lV Vl	1034	44	21' 18'	.0 .5	480	06	30	.1 .0	280	09'		'.0 '.0									+	0,.	.1
1 11 1V	lll Vl	44	58	21 22	.9	103	38	34 35	.5					310	23'		.7					+	0	.1
1 11 V1	111 1V	8	52	28 28	.5 .6	166	16	21 22	.9 .6									40	51'		.9	+	0	.2
1 111 1V	ll Vl	148	42	42 43	.9					16	59	13 12	.1	14	18	04	.1					+-	0	.1
1 111 VI	11 1V	112	36	46 51	.9 .6					44	16		.9					23	07	02 7	.3 .5	+	0	.1 .1
1 1V VI	11 111	36	05	53 52	.8								1	103	37	29 33		40	16		.4 .4			.1
11 111 1V	1. – V1					151	45	04	.6 .4	11	09	55 50		17		59 06								.1
11 111 VI	1 1V					145	37		.1 .7	16	07	02	.4					18	15		.4			.1
11 1V V1	1 111					62	37	47 49	.4					72	14	27 22	.3	45	07	45 47	.3	+	0	.0
111 1V V1	1 11									27	16	48 57	.7	89	19	29 29	4 .6	63	23	41 33	.9		0	.0

1-1V 1-VI 11-III 11-IV 11-VI 111-IV 111-VI 1		_				Côtés	Côtés en centimètres	es			
620043.9 620043.9 620043.9 619977.2 619974.0 620069.1 620069.1 620080.1 620030.1 620030.1 620030.1 620030.2 620030.2 620030.2 620030.2 620030.2 620030.3 620030	II - I	III- I		V1 - IV	I - VI	п-п	II - IV	II - VI	VI - III	III - VI	IV-VI
620043.9 620043.9 620043.9 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 455079.6 620030.1 435079.6 620	348742.9	348742.9				455077.5					
620043.9 619974.0 619974.0 620069.1 620069.1 620080.1 620030.1 620030.1 620043.9 619320.2 619320.2 620049.8 87.1 1120.8 87.1	7-1			412467.4		21	299983.2				
40.6 619974.0 83.7 4319.3 819977.2 819977.2 87.1 120.3 714.6 819982.3 714.0 87.1 120.3 714.0 120.3 714.0 120.3 714.0 120.3 714.0 112.6 226.0 14.9					620043.9			403097.7			
620080.1 455079.6 83.7 832.7 819992.8 81.5 819992.8 819992.8				69.8					733219.3		
620069.1 620069.1 4.1 620030.1 620080.1 62006.9 83.7 4.1 096.9 146.8 819982.3 171.4 112.6 112.6 120.3 71.4 112.6 297.8 81.5 226.0 14.9 81.5					40.6					819977.2	
83.7 4.1 996.9 165.8 87.1 120.3 71.4 112.6 820849.8 87.1 112.6 297.8 81.5 226.0 14.9 820849.8 81.5 81.5 81.5 81.5 820030.1	Ваве				620069.1						375905.0
87.1 120.3 820849.8 820849.8 87.1 120.3 820849.8 820830.1 12.6 220030.1 455079.6 299982.4 403120.0 733230.2 819992.8							83.7		215 0 146.8		
620030.1 455079.6 29982.4 403120.0 733230.2 81.5								996.9 165.8		819982.3 820849.8	
620030.1 455079.6 299982.4 403120.0 733230.2 81.5							87.1	120.3			
620030.1 455079.6 299982.4 403120.0 733230.2 819992.8									297.8 226.0	81.5	37
	348745.9 4	_	4	12467.3	620030.1	455079.6	299982.4	403120.0	733230.2	819992.8	375903.8

Quadrilatère XVI XVII XVIII XIX.

1re APPROXIMATION.

$$c_1 = \pm 2''.4, c_2 = -5''.4$$

 $c_3 = -8''.8, c_4 = -1''.0$
 $c_1 + c_3 = c_2 + c_4 = -6''.4$

Angles	Valeurs observées	Correc- tions	log sin.	Δlg sin/l"	∇_5	Correc- tions pour le côtés
1	680 40' 50".3	_ 0°.7	9.9692140	8.2	67.24	-0" 2
2	98 29 48 .5	+ 0 .9	9.995206	3.1	9.61	.(
3	5 05 00 .4	-1.0	8.9474419	236.8	56074.24	-5 .6
4	45 16 53 .6	+ 3 .2	9.851615	20.8	432.64	+0 .:
5	31 08 12 .1	+ 2 .3	9.7135671	34.8	1211.04	-0 .8
6	26 06 22 .0	+ 0 .7	9.643490	2 42.9	1840.41	+1 .0
7	77 28 23 .5	+ 2 .6	9.9895377	4.7	22.09	. (
8	7 44 23 .2	- 1 .6	9.129259	154.9	23994.01	-3 .
N	3600 — 6".4	+ 6".4	6197607 619571 D = 18.91	6	83651.28 q=44.23	

2me et 3me approximations.

	Angles	Correc- tions	log sin.	Corrections pour les côtés	Correc- tions	log sin.	Corrections pour les côtés	Valeurs définitives
	1	- 1".6	2127		_ 0".2	2125		680 40' 47".6
	2	+ 2 .3	2059		+ 0 .3	2058	7 3 4	98 29 52 .0
1	3	+1.3	3401	- 0'.7	+ 0 .2	3615	- 0".2	5 04 54 .4
	4	+ 0 .3	6158		+ 0 .1	8160		45 16 57 .7
	5	+1.9	5709	- 0 .1	+ 0 .3	5716		31 08 15 .7
	6	-1.8	4868	+ 0 .1	_ 0 .2	4863		26 06 21 .8
	7	- 1 .0	5372	1	_ 0 .2	5371		77 28 24 .9
	8	+ 0 .0	3169	+ 0 .4	± 0 .0	3246	+ 0 .1	7 44 25 .8
		+1.4			+ 0 .3			3600 — 0".1

Tableau résumant les valeurs définitives des angles du quadrilatère XVI XVII XVIII XIX.

			Angles	The View	
Triangles	XVI	XVII	XVIII	XIX	Erreurs des fermeture
XVI XVII XVIII XVI XVII XIX	31° 08' 15".7 57 14 37 .5 26 06 21 .8	50° 21' 52".1 45 16 57".7	980 29' 52''.0	770 28' 24".9	- 0".2 + 0 .1
XVI XVIII XIX	26 06 21 .8	5 04 54 .4	68 40 47 .6 167 10 39 .6	85 12 50 .7 7 44 25 .8	+ 0.1 + 0.2

Tableau des valeurs des côtés du quadrilatère XVI XVII XVIII XIX

			Côtés en c	entimètres		
Triangles	XVIII - XIX	XVIII - XVII	XVIII - XVI	XIX - XVII	XIX - XVI	XVI - XVII
XVII XVIII XIX XVI XVIII XIX XVI XVII XIX XVI XVII XVI	Base	288682.4	429947.7 429937.9	475673.1 475678.4	401925.0	552160 0 552146.5
Moyenne		288682.4	429942.8	475675.7	401925.0	552153.3

Quadrilatère XIII XV XVI XVII.

$$c_1 = +3''.2$$
, $c_2 = +3''.9$
 $c_3 = -11''.5$, $c_4 = -12''.2$
 $c_1 + c_3 = c_2 + c_4 = -8''.3$

Angles	Valeurs observées	Correc- tions	lg sin	∆lg sin/1"	Δ^2	Correc- tions pour les côtés	Valeurs définitives
1	28° 51' 16".1	+ 3".1	9.6835871	38.2	1459.24	N. HO	28051' 19" 2
2	131 00 29 .0	- 2 .9	9.8777321	18.4	338 56		131 00 26 .1
3	8 15 08 .5	- 2 .7	9.1569138	145.1	21054.01	- 0".1	8 15 05 .7
4	21 47 50 .2	+ 2 .8	9.5697674	52.7	2777.29		21 47 53 .0
5	18 56 36 .2	- 1 .1	9.5113870	61.3	3757.69	-	18 56 35 .1
6	19 50 07 .6	+ 4 .9	9.5306378	58.3	3398.89		19 50 12 .5
7	119 25 14 .5	+ 4 .8	9.9400306	11.9	141.61		119 25 19 .3
8	11 53 09 .6	- 0 .7	9.3137866	100.0	10000.00	+ 0".1	11 53 09 .0
	3600 — 8".3	+ 8 .2	2919185 £919239 D = 54		42927.29 q=794.9		3600 - 0".1

Tableau des valeurs définitives des angles du quadrilatère XIII XV XVI XVII

2		Ang	les	N. T. W.	Erreurs
Triangles	XVI	XVII	XIII	XV	de fermeture
XVI - XVII - XIII	110 53' 09".0	1590 51' 45".3	8° 15' 05".7		- 0".1
XVI - XVII - XV	131 18 28 .3	28 51 19 .2	Trans.	190 50' 12".5	0
XIII - XVII - XV		131 00 26 .1	30 02 58 .7	18 56 35 1	- 0 .1
XVI - XIII - XV	119 25 19 .3		21 47 53 .0	38 46 47 .6	- 0 .1

Valeurs des côtés du quadrilatère XIII XV XVI XVII.

			Cć	ités		
Triangles	XVI - XVII	XV-XVI	XV-XVII	XVII - XIII	XVI - XIII	XIII - XV
XVI XVII XIII	HALF!			7923.783	13244.898	
XVI XVII XV	Mark III	7852.515	12222.555		de la la	
XIII XVII XV	- 1 V 7 5		12222.706			18419.502
XVI XIII XV			1 - 15 /		13244.790	18419.243
Moyenne		7852.515	12222.630	7923.783	13244.844	18419.373

Compensation du réseau III VI VIII IX XIII XV.

VALEURS DES ANGLES.

Triangles	Angles	Valeurs mesurées	Correc- tions	Valeurs compenseés
	1	610 08' 34"	_ 3".0	610 08' 31".(
III VI VIII	2 3	80 28 49	- 2	80 28 47
	3	38 22 44	- 2	38 22 42
	4	360 50' 13"	- 1".0	360 50' 12".0
III VIII IX	5	112 34 11	- 2	112 34 09
	6	30 35 41	- 2	30 35 39
	7	310 07' 05".9	+ 0".6	310 07' 06", 5
VIII IX XIII	8	89 35 28 .5	+ 0 .6.	89 35 29 .1
	9	59 17 23 .8	+ 0 .6	59 17 24 .4
	10	630 31' 35".8	- 0".7	630 31' 35".0
VIII XIII XV	11	42 27 03 .7	0 .7	42 27 03
	12	74 01 22 .7	- 0 .8	74 01 22

Le calcul des côtés de ce réseau peut s'effectuer en partant soit du côté III VI, soit du côté XIII XV dont les valeurs sont connues. Mais ces valeurs ne sont pas indépendantes; on a, en effet :

$$\frac{\text{III VI}}{\sin 3} = \frac{\text{III VIII}}{\sin 2}$$

$$\frac{\text{III VIII}}{\sin 5} = \frac{\text{VIII IX}}{\sin 6}$$

$$\frac{\text{VIII IX}}{\sin 7} = \frac{\text{VIII XIII}}{\sin 8}$$

$$\frac{\text{VIII XIII}}{\sin 11} = \frac{\text{XIII XV}}{\sin 10}$$

En multipliant ces égalités membre à membre, il vient :

III VI =
$$\frac{\sin 3 \sin 5 \sin 7 \sin 11}{\sin 2 \sin 6 \sin 6 \sin 8 \sin 10}$$
 XIII XV

Cette formule permet de calculer directement le côté III VI en partant du côté XIII XV et réciproquement

Prenant

$$XIII XV = 18.419.373$$

nous trouvons

III
$$VI = 8.198.454$$

au lieu de

III
$$VI = 8.199.928$$

L'écart entre ces deux dernières valeurs est 1.474.

La compensation s'effectue en calculant de proche en proche les triangles qui composent le réseau en prenant comme valeur de la base de départ III VI, la moyenne des valeurs précédentes, soit

III
$$VI = 8.199.191$$

On trouve ainsi:

Valeurs compensées des côtés

Côtés	Valeurs définitives
VI — VIII III — VIII III — IX VIII — XIII IX — XIII VIII — XV	11566.33 13024.47 8456.24 7178.61 13889.90 11942.33 19783.95

Les deux secteurs E. et O. ont été orientés séparément.

A. — Secteur E. — L'azimut de la base I II a été déterminé au point II (terme Sud) par une série d'observations de la polaire. A cet effet une mire pour les pointés de nuit fut édifiée à 1 kilomètre environ du point II.

Elle consistait en deux pieux placés à 0^m,50 environ l'un de l'autre et enfoncés fortement dans le sol qu'ils dépassaient de 1^m,50. Ils étaient réunis par deux traverses en bois disposées horizontalement sur lesquelles étaient fixées deux planches de manière à former une fente bien verticale de 2 centimètres de large.

Pendant le jour cette fente est très visible si elle se projette sur un fond naturellement clair; dans le cas contraire, il suffit de placer à l'arrière une tôle en fer-blanc ou en zinc inclinée de 45° sur l'horizon. La nuit on éclaire la fente à l'aide d'une bonne lampe dont la flamme résiste au vent et qu'on place à l'arrière en la centrant rigoureusement.

L'angle entre la mire et la base fut trouvé égal à

17° 53′ 18″

vers le Nord.

Huit pointés de la polaire furent ensuite effectués. Ils sont transcrits ci-dessous avec tous les détails des calculs de réduction.

Observations de la Polaire

Date: 9 novembre 1910.

Montre Sûreté en temps moven.

357

	7 7 7		Min	·e
Heures	Cercle horizontal	Position	C. D.	C. G.
16h 26m10s	272032'44"	C. G.	125°22'21"	305022'19''
16 30 07	92 31 48	C. D.	25 .7	19 .3
16 39 00	272 31 45	C. G.	20	13
16 43 33	92 30 26 272 30 18	C. D. C. G.	24 .7	20
16 52 30 16 58 10	92 29 04	C. D.		20
16 58 10 17 08 31	272 28 28	C. G.	125022'22".3	305°22'17".7
17 13 51	92 27 00	C. D.	Movenne:	125022'20"

Formules :

(1) tg A = tg $p \sec \varphi \sin \eta \frac{1}{1-a}$

(2) $\eta = \alpha - t$

(3) $a = \operatorname{tg} p \operatorname{tg} \circ \cos \eta$

A = azimut de la polaire compté à partir du Nord

p= distance au pôle de la polaire = 1°10'04"3

φ = latitude du point II = 50°59'16"

η = angle horaire de la polaire

α == ascension droite de la polaire = 1^h 27^m50^s8

t == heure observée, corrigée de l'état de la montre et exprimée en temps sidéral.

L'état de la montre sur le temps moyen local a été trouvé égal à + 21^m25^s5 par quatre hauteurs du Soleil mesurées, le 9 novembre 1910, dans l'après-midi.

Les calculs qui suivent ont été faits en prenant la moyenne des observations C. D. et C. G.

CALCUL DES VALEURS DE 7

Temps observé, C. G	16 ^h 26 ^m 10 ^s	16 ^h 39 ^m 00 ^s	16 ^h 52 ^m 30 ^s	17 ^h 08 ^m 31 ^s
	16 30 07	16 43 33	16 58 10	17 13 51
Moyenne	16 ^h 28 ^m 08 ^s 5 + 21 25 5	16 ^h 41 ^m 16 ^s 5 21 25.5	16h 55m20s0	17 ^h 11 ^m 11 ^s 0 21 25.5
Temps moyen local Idem moins 12 ^h Correction	16 ^h 49 ^m 34 ^s 0	17 ^h 02 ^m 42 ^s 0	17 ^h 16 ^m 45 ^s 5	17h 32m36s5
	4 ^h 49 ^m 34 ^s 0	5 ^h 02 ^m 42 ^s 0	5 ^h 16 ^m 45 ^s 5	5h 32m36s5
	+ 47.5	49.7	52.1	54.6
Intervalle en temps sidéral.	4h 50m21s5	5h 03m31s7	5 ^h 17 ^m 37 ^s 6	5 ^h 33 ^m 31 ^s 1
Temps sidéral à midi moyen	15 11 03.3	15 11 03.3	15 11 03.3	15 11 03.3
Temps sidéral = t $\alpha + 24^{\text{h}}$	20 ^h 01 ^m 24 ^s 8	20 ^h 14 ^m 35 ^s 0	20h 28m40s9	20h 44m34s4
	25 27 50.8	25 27 50.8	25 27 50.8	25 27 50.8
η	5h 26m26s0	5h 13m15s8	4h 59m09s9	4h 43m1694
$\lg \cos \eta$	9.1641718	9.3064610	9.4188588	9.5166205
	8.3093286	8.3093286	8.3093286	8.3093286
	9.8904275	9.8904275	9.8904275	9.8904275
lg a	7.3639279	7.5062171	7.6186149	7.7163766

			Mov	enne	90°41′54″	+ 5"	
Trace du méridie	n			90°41′54″6	90°41′45″2	90°41′50″4	90°42′04″0
Cercle horizonta	l .	•		92 32 16.0	92 31 05.5	92 29 41.0	92 27 44.0
A				1°50′21″4	1°49′20″3	1°47′50″6	1°45′40″0
lg tg A				8.5066726	8.5026438	8.4966671	8.4878019
$\lg \frac{1}{1-a} {1 \choose 1} .$				10050	13950	18080	22660
lg sec φ				0.2010138	0.2010138	0.2010138	0.2010138
$\lg \lg p$				8.3093286	8.3093286	8.3093286	8.3093286
lg sin η	6			9.9953252	9.9909064	9.9845167	9.9751935

Moyenne							90°	41'	54"	土	5"	
Mire		200					125	22	20			
Azimut d	e la	mi	re				34°	40'	26"			à partir du Nord
Angle de	la	M	lire	av	ec	la						
base .					•	•	. 17	53	18			1000000
Azimut de	e la	ba	se l	I-I			52°	33'	44"			

Cet azimut est compté à partir du méridien local; pour le rapporter au méridien de Bruxelles qui est celui de la carte de Belgique, il faut tenir compte de la convergence de ces deux méridiens. La correction a été calculée au moyen de la formule complète

$$\cot \frac{\alpha - \alpha'}{2} = \cot \frac{\omega}{2} \frac{\cos \frac{\varphi - \varphi'}{2}}{\sin \varphi + \varphi'}$$

Oil

 $\varphi'=50^{\circ}$ 24' 00" = latitude de l'origine de la carte de Belgique.. $\varphi=\underbrace{50\ 59\ 21}_{}=\text{latitude du point II.}$ $\varphi-\varphi'=\underbrace{0^{\circ}\ 35'\ 24''}_{}=\underbrace{\frac{\varphi-\varphi'}{2}}_{}=\underbrace{0^{\circ}\ 17'\ 40''\ 5.}$

⁽¹⁾ Ces valeurs ont été extraites de la table p. 399 et suiv. de l'ouvrage « Détermination of time, longitude, latitude, and azimut » by J.-F. Hayford, Appendix no 7 — Report for 1897-98 of U. S. Coast and Geodetie Survey, Washington: Government printing office 1899,

$$\varphi + \varphi' = 101^{\circ} 23'21'' \quad \frac{\varphi + \varphi'}{2} = 50^{\circ} 41' 40'' 5$$
 $\omega = 1^{\circ} 18' 30'' = \text{longitude de II par rapport à Bruxelles}$
 $\frac{\omega}{2} = 0^{\circ} 39' 15''$

On trouve avec ces données

$$\lg \cot g \frac{\omega}{2} = 1.9424154$$

$$\lg \cos \frac{\varphi - \varphi'}{2} = 9.99999943$$

$$\cot \lg \sin \frac{\varphi + \varphi'}{2} = 0.1113824$$

$$\frac{2.0537921}{2}$$

$$\frac{\alpha - \alpha'}{2} = 0.99999943$$

$$\frac{2.0537921}{2}$$

Ce qui donne pour l'azimut de la base en nombre rond

B. — L'orientation de ce secteur a été déduite de celle du réseau géodésique belge qui a été obtenue en déterminant astronomiquement l'azimut de la direction Bruxelles (église Saint-Joseph) — Malines.

Des observations astronomiques faites à la même époque à Nieuport et à Lommel servirent uniquement de contrôle. Il fut peu satisfaisant, car on constata entre les azimuts géodésiques calculés en partant de l'azimut astronomique de Bruxelles et l'azimut astronomique de Lommel, une différence non négligeable qui déterminée très exactement par Delporte (Triangulation du Royaume de Belgique, Tome VI, p. LXVIII) fut trouvée égale à 45,26 secondes centésimales, soit 14"66, qu'il faut retrancher de l'azimut astronomique de Lommel.

Ce dernier fut déterminé en 1855 par Houzeau et Adan qui trouvèrent :

Azimut signal Lommel — Signal Camp 200° 45′ 24″.00 (voir Triangulation du Royaume de Belgique, Tome I, p. 515). Cette valeur subit dans la suite une correction et devint

(ibidem, p. 525).

De sorte que l'azimut de cette direction serait en réalité

Cette valeur se rapporte au méridien de Lommel; pour l'obtenir par rapport au méridien de Bruxelles qui est celui de la carte de Belgique, il faut encore tenir compte de la convergence des deux méridiens de Lommel et de Bruxelles. Pour calculer cette correction nous avons fait usage de la formule:

$$\cot \frac{\alpha - \alpha'}{2} = \cot \frac{\omega}{2} \cdot \frac{\cos \frac{\varphi - \varphi'}{2}}{\sin \frac{\varphi + \varphi'}{2}}$$

où α — α' représente la correction cherchée

ω la différence de longitude entre les deux méridiens

g la latitude de Lommel

et φ' la latitude de l'origine des coordonnées de la carte de Belgique, soit 56 grades ou 50° 24′ 00″.

On trouve (tome III de la Tr. du R. de B. p. 63)

Latitude Longitude
Lommel (signal) 56, 6 8539 1755 — 1, 6 0376 199

ou en divisions sexagésimales

$$\varphi = 51^{\circ} \, 10' \, 06"9$$
 $\omega = 0^{\circ} \, 56' \, 02" \, 1$

D'où nous avons déduit

$$a - a' = 0^{\circ} 43' 24'' 96$$

Cette correction est soustractive et l'azimut au signal de Lommel par rapport au méridien de la carte de Belgique est

De cette valeur nous allons maintenant déduire l'azimut de la base de Lommel qui est celui de notre base de départ XVIII - XIX.

La direction Lommel (signal) — Camp (signal) est reliée à la base de Lommel A B (planche I), au moyen de deux triangles dont nous trouvons les éléments angulaires dans le tome III de la Tr. du R. de B., p. 16 et 17. Les angles sont donnés en grades; si nous les exprimons en degrés nous trouvons

	180°		0"	00		180			1
Terme B	-		To a series	39	Terme A .	56	25	34	45
Lommel (s).					Terme B	74	41	30	66
Camp (s) .	110	45'	29'	53	Lommel (s).	480	52'	55"	09

On a ensuite

Azimut Lommel (s) — Camp (s).		200° 01' 41" 88
Angle en L		19 17 22 10
Azimut Lommel (s) — Terme B.		180° 44' 19" 78
Azimut Terme B — Lommel (s).	,	360 44 19 78
Angle Terme B		74 41 30 70
Azimut Terme B — Terme A		286 02' 49" 08

Telle est la valeur dont nous sommes partis pour l'orientation du secteur occidental de notre triangulation.

Une série d'observations de la Polaire, le 9 octobre 1912, quoique faite dans de mauvaises conditions avait donné pour le même azimut 286° 02' 56" 8.

Calcul des azimuts des directions

A. — Figure I II III IV VI. — Les azimuts des côtés de cette figure ont été calculés en partant de la valeur

déterminée astronomiquement et au moyen des angles compensés contenus dans le tableau page 351.

On trouve ainsi

Directions	Azimuts			
I - II	231° 33' 00".0			
II - III	3 26 28 .4			
II — IV	155 11 34 .8			
II - VI	217 49 22 .3			
I - III	335 17 19 .7			
I - IV	186 34 37 .8			
I - VI	222 40 31 .5			
III — IV	172 16 34 .8			
IV - VI	262 57 08 .0			
III — VI	199 33 29 .4			

B. — Quadrilatères XVI XVII XV XIII et XVIII XIX XVII XVI. — Pour le calcul des azimuts des côtés de ces deux quadrilatères on est parti de la valeur

Az. XVIII — XIX =
$$286^{\circ} 02' 49'' .0$$

que nous avons déduite du réseau géodésique belge et nous avons fait usage des angles compensés renseignes dans les tableaux des pages 355 et 354. Le résultat obtenu est consigné ci-dessous.

Directions	Azimuts
XVIII — XIX	286° 02′ 49".0
XVIII — XVII	118 52 09 .4
XIX — XVII	113 47 14 .8
XIX — XVI	191 15 39 .7
XVIII — XVI	217 22 01 .4
XVII — XVI	248 30 17 .3
XVI - XV	199 48 45 .4
XVII — XV	219 38 58 .1
XVI — XIII	80 23 26 .1
XVII — XIII	88 38 32 .0
XV - XIII	58 35 33 .1

C. — Réseau III VI VIII IX XIII XV. — Les azimuts des côtés de ce réseau ont été calculés en partant des valeurs des azimuts des côtés III VI et XIII XV donnés plus haut en les compensant des écarts résultant de ces deux valeurs.

Pour comparer ces deux valeurs, écrivons les égalités suivantes qui résultent facilement de la figure (planche I).

Az. III — VI + 1 = az. III — VIII = az. VIII — III +
$$180^{\circ}$$
 Az. VIII — III $-4-9$ = az. VIII — XIII = az. XIII — VIII + 180° Az. XIII — VIII + 12 = az. XIII — XV.

En faisant la somme de ces égalités, il vient

ou Az. III — VI =
$$4 + 9 - 1 - 12 + 360^{\circ} + az$$
. XIII — XV Az. III — VI = Az. XIII — XV + $4 + 9 - (1 + 12)$

Prenant pour valeur de l'azimut de la direction XIII — XV celle que nous avons déduite de la base de Lommel et pour les angles les valeurs renseignées au tableau page 355 on trouve

au lieu de

calculée en partant de l'orientation de la base de la Meuse. La moyenne de ces deux valeurs est

Az. III —
$$VI = 199^{\circ} 33' 23''$$

A l'aide de cette valeur et des angles compensés indiqués au tableau page 355, nous obtenons

Directions	Azimuts
III — VIII	260° 41′ 54″.0
III - IX	291 17 33 .0
VI — VIII	299 04 36 .0
VIII — IX	43 51 41 .9
IX — XIII	313 27 11 .0
VIII — XIII	344 34 17 .6
VIII — XV	281 02 42 .5

Calcul des coordonnées

I. - Coordonnées partielles.

A l'aide des longueurs et des Azimuts des côtés qui viennent d'être déterminés, nous calculons les coordonnées partielles, comme il est indiqué dans les tableaux qui suivent :

A. - Figure I II III IV VI.

Côtés	Azimuts vrais	Longueurs	x	y
1-11	2310 33' 00".0	2210.396	- 1374.50	- 1731.08
1 — 111	335 17 19 .7	3487.46	+ 3168.10	- 1457.91
1 - 1V	186 34 37 .8	4124.67	- 4097.52	- 472.44
11 — 111	3 26 28 .4	4550.80	+ 4542.59	+ 273.17
11 — 1V	155 11 34 .8	2999.82	- 2723.02	+ 1258.61
11 — V1	217 49 22 .3	4031.20	- 3184.29	- 2472.02
111 — 1V	172 16 34 .8	7332.30	- 7265.78	+ 985.43
111 — VI	199 33 29 .4	8199.93	- 7726.81	- 2745.04
1V — V1	262 57 08 .0	3759.04	- 461.22	- 3730.64
1 — V1	222 40 31 .5	6200.30	- 4558.49	- 4202.84

B. — Quadrilatères XVI XVII XV XIII et XVIII XIX XVII XVI.

Cótés	Azimuts vrais	Longueurs	x	Very r
XVIII — XIX	2860 02' 49".0	1898.54	+ 524.80	- 1824.56
XVIII — XVII	118 52 09 .4	2886.82	_ 1393.79	+ 2528.06
XIX — XVII	113 47 14 .8	4756.76	- 1918.61	+ 4352.66
XIX — XVI	191 15 39 .7	4019.25	— 3941 87	- 784.88
XVIII — XVI	217 22 01 .1	4299.43	- 3417.03	- 2609.41
XVII — XVI	248 30 17 .3	5521.53	- 2023.22	- 5137,50
XVI — XV	199 48 54 .4	7852,52	— 7387 70	_ 2661.57
XVII — XV	219 38 58 .1	12222,63	- 9410.97	- 7799,13
XVI — XIII	80 23 26 .1	13244.84	+ 2210.97	+ 13058.87
XVII — XIII	88 38 32 .0	7923.78	+ 187.77	+ 7921.56
XV — XIII	58 35 33 .1	18419.37	+ 9598.72	+ 15720.62

367

Côtés	Azimuts vrais	Longueurs	У	A A
XV — VIII	1010 02' 42".5	19783.95	- 3790.25	+ 19417.49
XIII — VIII	164 34 17 .6	13889.90	- 13389.35	+ 3695.20
XIII — IX	133 27 11 .0	11942.33	- 8213.46	+ 8669.39
VIII — IX	43 51 41 .9	7178.61	+ 5175.89	+ 4974.20
VIII — III	80 41 54 .0	13024.47	+ 2105.18	+ 12853,21
1X — 111	111 17 33 .0	8456.24	- 3070.71	+ 7879.01
VIII — VI	119 04 36 .0	11566 33	- 5621.00	+ 10108.63

II. - Coordonnées absolues.

A. — Figure I II III IV VI. — Le calcul des coordonnées absolues des points de cette section a été fait en partant des valeurs obtenues pour le point VI (Tour d'Opgrimby) par rattachement au réseau géodésique belge. Ce rattachement a été effectué de la manière suivante :

1° Par un relèvement sur les trois points connus par leurs coordonnées : clocher de Dilsen (ancien), clocher de Mechelen, clocher de Genck ;

2º Par le triangle VI III clocher de Dilsen (a);

3º Par la distance VI — clocher de Mechelen déduite des deux triangles II VI Mechelen et V VI Mechelen ;

4º Par le triangle VI III clocher d'Asch.

Le clocher d'Asch est un point du 2° ordre; les clochers de Dilsen (a), Mechelen et Genck sont des points du 3° ordre.

Leurs coordonnées d'après les axes de la carte de Belgique sont (voir Triangulation du Royaume de Belgique — Calcul des coordonnées géographiques et construction de la carte — tome III — année 1881. Ixelles-Bruxelles. Imprimerie A. Cnops, fils, rue du Conseil, 3, pages 69, 111 et 112).

	X	Y
Clocher d'Asch	+68482.8	- 85371.4
Clocher de Dilsen	- 71449.9	- 95871.3
Clocher de Genck	+63412.8	- 79432.8
Clocher de Mechelen	+63340.2	-93561.2

Nous nous bornerons à transcrire ici les calculs relatifs au problème du relèvement et les résultats des autres opérations.

Problème du relèvement sur trois points connus ou de Pothenot.

— Les données du problème sont :

Différence $\Delta Y = 2310.1 \Delta X = 8$			
	3340.2 79432	.8 63412.8	Cr Genck
Cr Dilsen 95871.3 71	449.9 95871	.3 71449.9	Cr Dilsen

Les angles observés sont p et p':

$$p = 49^{\circ} 44' 15''$$
 $p' = 125^{\circ} 45' 31''$

Le calcul des formules

donne

$$\operatorname{tg} \alpha = \frac{\Delta X}{\Delta Y} \quad \operatorname{et} \quad \operatorname{tg} \beta = \frac{\Delta X'}{\Delta Y}$$

 $\alpha = 15^{\circ} 53' 59''8 \qquad \beta = 63^{\circ} 56' 42''4$ et $\beta - \alpha = 48^{\circ} 02' 42''6$

ct lg sin \(\alpha \) 0.5623155 \ et lg sin \(p \) 0.1174233 \ ct lg \(\Delta \) Y' 5.7841378 \ \ 9.9761297 \ lg sin \(A \)

En résumé les valeurs obtenues pour les cordonnées de VI sont :

X	Y	Valeu	rs déc	duites du relèvement sur Cr de	е
63134.17	89527.40	Dils	en (ar	ncien), Mechelen, Genck.	
4.05	8.46	Delad	istano	e VI — Cr de Mechelen)	
4.38	7.64	»	»	$VI - C^r de Dilsen (ancien) $ p	4-
3.62	7.05	»	»	VI — Cr d'Asch	•
63134.05	89527.64				

Dans notre esprit ce rattachement ne devait être que provisoire pour nous permettre de calculer les éléments nécessaires à l'établissement des plans des concessions situées entre Genck et la Meuse; mais la concordance des valeurs données ci-dessus et de celles qui furent déterminées dans la suite, comme nous allons le voir, nous décidèrent à le conserver pour servir au calcul des coordonnées absolues des points de la figure I II III IV VI. Partant de la valeur des coordonnées de VI ainsi déterminées et des données du tableau de la p. 14, on trouve

COORDONNÉES

	PARTIELLES			Totales	
Directions	x .	y	X	Y	Points
VI — I	+ 4558.49	+ 4202.84	67692.54	93730.48	I
VI — IV	+ 3184.29	+ 2472.02	66318.34	91999.66	11
VI — III	+ 7726.81	+ 2745.04	70860.86	92272.68	III
VI — IV	+ 461.22	+ 3730.64	63595.27	93258.28	IV
IV — II	+ 2723.02	- 1258.61	66318.29	91999.67	11
IV — I	+4097.52	+ 472.44	67692.79	93730.72	I
IV — III	+ 7265.78	- 985.43	70861.05	92272.85	III
11 — 1	+ 1374.50	+ 1731.08	67692.82	93730.74	I
111-111	+ 4542.59	+ 273.17	70860.91	92272.83	III
1-111	+ 3168.10	- 1457.91	70860.82	92272.74	111

Faisant les moyennes des diverses valeurs obtenues, on a finalement

I	67692.72		93730.65
II	66318.32		91999.66
III	70860.91	1	92272.78
IV	63595.27		93258.25
VI	63134.05		89527.64

B. — Quadrilatères XVI XVII XV XIII et XVIII XIX XVII XVI.

Les coordonnées absolues des points de ces figures ont été déterminées en partant de celles du point XIII, clocher de Peer, point de triangulation de 1er ordre du réseau géodésique belge dont les coordonnées sont d'après l'ouvrage déjà cité, page 63:

$$XIII = Peer (Tour)$$
 $X = +82146.0$ $Y = -75722.1$

Les autres ont été calculées au moyen des données contenues dans le tableau suivant :

COORDONNÉES

Partielles			Totales		
Directions	źc .	y	X	Y	Points
XIII — XVI	— 2210.97	-13058.87	79935.03	62663.23	XVI
XIII — XVII	- 187.77	— 7921.56	81958.23	67800.54	XVII
XIII — XV	- 9598.72	-15720.62	72547.28	60001.48	XV
XV — XVII	+ 9410.97	+ 7799.13	81958, 25	67800.61	XVII
XV — XVI	+ 7387.70	+ 2661.57	79934.98	62663.05	XV1
XVI — XVII	+ 2023.22	+ 5137.50	81958.22	67800.64	X V11
XVI XVII	+ 3417.03	+ 2609.41	83352.03	65272.55	XVIII
XVI — XIX	+ 3941.87	+ 784.88	83876.87	63448.02	XIX
XVII — XVIII	+ 1393.79	_ 2528.06	83352 02	65272.54	XVIII
XVII — XIX	+ 1918.61	→ 4352.66	83876.84	63447.94	XIX

Les valeurs moyennes sont :

XV	72547.28	60001.48
XVI	79935.00	62663.14
XVII	81958.23	67800.60
XVIII	83352.03	65272.54
XIX	83876.85	63447.98

C. — Réseau III VI VIII IX XIII XV. — On conserve les valeurs précédemment déterminées pour III, VI, XIII et XV.

Celles de VIII et IX ont été calculées par deux voies différentes :

1º En partant des points XIII et XV, on trouve

Directions	w w	y	X	Y	Points
XIII — VIII XV — VIII XIII — IX VIII — IX	$ \begin{array}{r} -13389.35 \\ -3790.25 \\ -8213.46 \\ +5175.89 \end{array} $	+3695.20 $+19417.49$ $+8669.39$ $+4974.20$	68756.65 68757.03 73932.54 73932.73	79417.30 79418.97 84391.49 84392.34	VIII VIII IX IX

Les moyennes sont

VIII 68756,84 794418,14 IX 73932,64 84391,92

2º En partant des points VI et III

Directions	w .	y	X	Y	Points
VI — VIII	+5621.00 -2105.18 -5175.89 $+3070.71$	-10108.63	68755.05	79419.01	VIII
III — VIII		-12853 21	68755.73	79419.57	VIII
IX — VIII		- 4974.20	68755.73	79419.57	VIII
III — IX		- 7879.01	73931.62	84393.77	IX

D'où l'on tire comme valeurs moyennes de

VIII 68755,50 79419,38 IX 73931,62 84393,77 Finalement nous adoptons les moyennes de ces deux résultats, soit

VIII 68756,17 79418,76 IX 73932,13 84392,85

Pour terminer la détermination des éléments fondamentaux de nos levés, il reste à calculer la position des autres sommets de la triangulation primaire qui ne font pas partie de la chaîne continue des triangles que nous venons d'étudier.

Pour ce calcul nous ferons usage des valeurs suivantes déduites des figures compensées.

Côtés	Longueur	Azimuts
VIII — IX	7178.59	430 51' 38".3
111 — V1	8200.01	199 33 31 .4
111 — 1X	8457.29	291 17-36 .5
V1 — V111	11567.09	299 04 51 0
IX — XIII	11943.60	313 27 00 .0
VIII — XV	19783.92	281 02 51 .7
m – vm	13025.20	260 42 03 .0
V1 — 1X	11956.80	334 34 03

ANNALES DES MINES DE BELGIQUE

24 27 55 55

34

11617,90

XIV - XII

42° 26° 01".8 16 28 06 .2 121 05 52 .0 5 38 32 .3 152 52 55 3 21 28 32 .4

HWEED OF !!

MIX

XIV - VIII - XII

16 28 06 121 05 52 5 38 32 152 52 55 21 28 32

+2".0 2 .1 2 .1

1552 5525 3

N N N

XIV - XI - XII

228320

20 04

12222,25

ci L.

e. e.

(94) CED0(3) ES 778 EESS. 62 462 EB142

330 132109

0. 0.

05 22 50 41 04 51 50 39

175 130 81 130

7435,84 8024,38 12222,25 8024,31

X1-X X1-X X1V-X X1-X

6. 0. 6. 6.

X X X X

VIII - X1 - X

441 CD1811 889 132/169

X - XI - XIX

273° 18' 35" 34 24 27

4881,16

VIII - XII XIV - XIX

Triangles	Angles	s Vediumnimsurées	Correc- tions	Valeurs compensées		Longueurs	Azimuts
IV - VI - V	M	46-68 31".4	0."7-	400 32' 44".5	V - IV	2556,943	16° 22' 22".0
	7	T. 18.36 .5	0. 7-	72 52 29 .5	1V - V	3609,364	303 29 52 .5
	I/A	(4) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	-7.1	66 34 46 .0	III.		
III - IV - V	>	1100 E99E99 .8			JII. V	5648,858	201 00 14 .1
	M	-48 4464£0 .9			V- VI	3609,726	303 29 53 .9
1-III-V	>	37 5-50/2E8 . 8	N.		1. V	4069,478	238 50 40 .9
	-	E90 2 20 3 5 . 8	1		W-III	5648,743	201 00 12 1
1-1V-V	=	CER 1558 .1	+3 .3	52 16 01 .4	V - VI	3609,554.	303 29 51 .7
	2	9. 23/10-0 (199	+3.5	63 04 46 .1	1-V	4069,440	238 50 39 .2
	>	Nett 339,000 . 2	+3 .3	64 39 12 .5	12.57		
III - VI - VII	H	.840.6E34199	ĉ	61° 29' 01".	III - VIII	10462,49	2610 02' 32''.4
	EA.	四年	-11	70 46 46	VI - VII	9735,89 (1/3)	308 46 45 .4(1/3)
	ILA	#IF## LIF	-1	47 44 13			
VI - VIII - VII	IA:	10 HE 10	<u>c</u> +	9 42 08	VI - VII	9735,42	308 46 59 .0
	VIII	3920 4(15) 30	+ 4	39 46 34	VIII - VIII	2564,42	79 18 17 .0
	VIII	1800 3111 141	+ 4	130 31 18			
111 - 1X - VIII	=	30 IB= IB	+ 1	30 15 16	III - VII	10462,43	261 02 20 .5
	XI	- FE 18 4	+1	96 16 49	IX - VII	5303,23	207 34 25 .5
	TIA.	123 TT 30	0	53 27 55			
•							-
1X - XIII - VII	I XI			105 52 32 .7	IX - VII	5303,42	207 34 27 .3
	N N			20 50 56 .3	XIII - VII	14332,83	154 17 56 .3
	NI N			53 16 31 .0			
VIII - XV - XIV					VIII - XIV	14743,85	230 52 32 .6
					XV - XIV	15334,13	148 38 37 .0
VIII - XIV - XI	■IIA	11年之初 至57.5	+1".2	170 26' 26".7	VIII - XI	5847,56	248º 18' 59".3
	XIX	110 + 49322 .0	1 .2	10 49 33 .2	IX - VIX	9331,16	40 02 59 .4
	N	1001 +4058 . 9	1 .2	151 44 00 .1			
VIII - XIV - X	TILA	359+47 E1",1	-1".3	550 47' 10".1	X-IIIA	7435,75	1750 05' 22"

On trouve alors :

COORDONNÉES PARTIELLES

Directions	Longueurs	Azimuts vrais	χ 1 cos α	γ l sin α	X	Y	Points
1 - V 111 - V 1V - V	4069,459 5648,800 3609,548	238° 50′ 40″.0 201 00 13 .1 303 29 52 .7	-5273,48 + 1992,14	$\begin{array}{r} -3482,50 \\ -2024,68 \\ -3010,02 \end{array}$	65587,33 . 43 41	90248,15 10 26	v v v
V1 - V III - VII V1 - VII	2556,943 10462,46 9735,77	261 02 26 .5 308 46 48 .8	— 1629,35	+ 720,76 -10334,81	69231,56	81937,97	VII
VIII - VII (1/3) 1X - VII XIII - VII		79 18 17 .0 207 34 26 .4 154 17 56 .3	+475,92 $-4700,93$	-7589,56 $+2519,87$ $-2454,87$ $+6215,79$	2,09 1,20	8,08 8,63 7,98	
VIII - XIV XV - XIV	14743,85 15334,13	230 52 32 .6 148 38 37 .0	- 9303,44	$ \begin{array}{c c} -11437,97 \\ +7979,27 \end{array} $	1,13 59452,73 75	7,89 67980,79 75	XIV
V111 - X1 X1V - X1	5847,56 9331,16	248 18 59 .3 40 02 59 .4		5433,78 + 6004,17	66595,62	73984,98 94	XI
VIII - X XIV - X XI - X	7435,80 12222,25 8024,34	175 05 22 81 04 51 130 50 40	-7408,51 $+1894,95$ $-5247,93$	$ \begin{array}{r} + 636,51 \\ +12074,46 \\ + 6070,31 \end{array} $	61347,66 69 68	80055,27 23 27	X
VIII - XII XIV - XII XI - XII	4881,16 11617,92 2505,88	273 18 35 34 24 27 12 55 55	+ 281,81 $+$ 9585,26 $+$ 2442,32	$ \begin{array}{r} -4873,02 \\ +6565,01 \\ +560,80 \end{array} $	69037,98 8,00 7,93	74545,74 78	X11

Résumé des valeurs.

A. — Coordonnées.

V	65587,37	90248,23
VII	69231,34	81938,03
XIV	59452,74	67980,77
XI	66595,61	73984,96
X	61347,67	80055,26
XII	69037,97	74545.76

B. — En adoptant ces valeurs, on trouve:

Directions	Longueurs	Azimuts	
VIII - XIV	14743,86	230° 52′ 33"	
XV — XVII	12222,61	39 38 58	
XIV — XV	15334,13	328 38 37	
XV - XVI	7822,57	19 48 47	
VIII — XV	19783,91	101 02 52	
VI — VII	9735,46	308 46 39	
XIII — VIII	13890,74	344 33 58 .5	

(A suivre).