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Abstract
To improve tsunami hazard assessment, paleotsunami research aims at extending the time span of a region’s historical tsunami record in order to provide a greater number of inter-event periods to investigate. With seventeen tsunami deposits, i.e. sixteen inter-event periods, the sedimentary record of Lake Huelde in south central Chile belongs to the longest paleotsunami records from a coastal subduction zone setting. The compiled inter-event periods of the Lake Huelde paleotsunami record show a complex bimodal recurrence pattern. The null hypothesis, that the underlying process is a time-independent (memoryless) Poissonian process can be rejected by use of the Cox and Oakes test for exponentiality. By creating six different synthetic recurrence patterns based on statistical principles and real-world examples, we explore the reliability of simple descriptive statistical metrics. The results reveal that the level of certainty for mean inter-event period or variability of the process varies strongly with sample size and underlying process, e.g. rupture behavior. Of the investigated recurrence patterns, the simplest, i.e. a normal distribution, is described with reasonable reliability with only 3 inter-event periods. The required number of inter-event periods needed increases with recurrence pattern complexity and/or time-independence, i.e. the most complex model is a supercycle model, which reaches the same level of reliability only after 100 inter-event periods. We argue that the current best practice of reporting the mean inter-event period with 1σ- or 2σ-ranges of the sample can be misleading for tsunami or seismic hazard assessment without considering the sample size and the possible underlying process. This becomes strikingly obvious when considering that the mean inter-event period of the Lake Huelde record of ~325 years, coincides with the anti-mode at ~315 years, i.e. the least likely between the two modes of 115 years and 490 years. The implications for south central Chile are that the probability for a tsunami in the next 50 years is 11.6%, which decreases to only 5.2%, if 250 years elapse without tsunami occurrence. This decrease in probability would be unaccounted for with a classical hazard assessment, e.g. assuming Poissonian behavior. We conclude with four requisites for a robust recurrence pattern: i) good age control, ii) a stable sensitivity of the record to be impacted by and preserve traces of the event, iii) continuity in the record, and iv) a sufficient sample size given the expected underlying process.


Introduction
Modern tsunami risk mitigation plans are based on the results of probabilistic tsunami hazard assessments (PTHAs), in which tsunami source parameters are defined and a recurrence probability model is applied to the source (Geist and Parsons, 2006; Geist and Lynett, 2014). So far, tsunami sources, in the case of seismic triggering, have usually been modeled to recur time-independently from previous earthquakes, i.e. with a constant hazard rate, using a Poisson process. It has been recognized, however, that tsunami generation may have a more complex recurrence pattern, i.e. supercycle fault rupture behavior among others (e.g. Sieh et al., 2008), in which cases the used PTHAs may thus be deficient. 
The Poisson process is widely used, because of its time-independency. Time-independent behavior means that the probability of future event is unaffected by how much time has passed since the last event, i.e. a memoryless process (conceptually important). It is easy to compute, because it only needs a single parameter (the mean) as input to be complete. There are several systems in earthquake-related sciences in which Poissonian behavior is observed, for example:
i) Rapid stress recovery after giant earthquakes indicates the potential of virtually time-independent, i.e. Poissonian, earthquake occurrence on some subduction zones (Tormann et al., 2015).
ii) The earthquake catalogue suggests Poissonian behavior of global M9 earthquakes (McCaffrey, 2008).
iii) Seismoturbidites in Lake Tutira, New Zealand, exhibit a Poissonian recurrence pattern (Gomez et al., 2015).
Contrastingly, indications for non-Poissonian behavior for tsunami generation and related processes have been observed in a number of settings, which offer other plausible scenarios in direct competition to the Poissonian model. For example: 
i) Subduction zones with wide seismogenic zones may rupture time-dependently, in “supercycles” (Goldfinger et al., 2013; Herrendörfer et al., 2015), i.e. a sequence of earthquakes in short succession is followed by an outsized earthquake.
ii) Earthquakes in West Sumatra exhibit a different type of “supercycles” (Sieh et al., 2008; Philibosian et al., 2017), i.e. a sequence of earthquakes in short succession is followed by a long quiescent phase with a mean interval of 51.0 ± 61.4 years and a coefficient of variance (COV) of 1.20.
iii) Major subduction zone earthquakes on the Japan Trench appear to occur “a-periodically” (Sawai et al., 2009), i.e. inter-event periods ranging from 100 to 800 years with a mean inter-event periods of 323.6 ± 185.7 years and 322.3 ± 224.4 years with COVs of 0.57 and 0.70, respectively.
iv) Major earthquakes on an isolated transform plate boundary appear to occur regularly (Berryman et al., 2012), i.e. with a mean interval of 329 ± 68 years with a COV of 0.33. 
v) Larger earthquakes in Chile appear to occur “more periodically” (Moernaut et al., 2018), i.e. with a mean interval of 291.8 ± 92.9 years with a COV of 0.32.
vi) Major subduction zone earthquakes in Alaska appear to occur “periodically” (Shennan et al., 2014), i.e. with a mean interval of 594.0 ± 156.1 years with a COV of 0.26. 
The descriptive statistical terminology, e.g. “supercycles”, “periodically”, “a-periodically” or “regularly”, used for recurrence patterns in the cited publications is unavoidably vague as is the terminology in this publication, because threshold values are not clearly defined. Another source of potential confusion is that mean inter-event periods are reported in scientific publications with small sample sizes because they are the best available estimate. However, the usually reported standard deviation (or 2σ-range) reflects the variability in the small dataset and not how well this value describes the inherent variability of the underlying process.
Historical documentation of tsunami occurrence is often used to constrain the mean recurrence interval of large tsunami inundations, improving hazard assessments. However, PTHAs with paleotsunami data with complex recurrence patterns as input do not yet exist. Incomplete or unreliable historical records and unaccounted variability in recurrence times could lead to costly overprotection of coastal areas or to an insufficiently prepared population exposed to a great hazard. 
The geological approach to this problem of small sample sizes is to produce longer and continuous sedimentary records with dated event deposits. However, even most subduction zone paleoseismic and paleotsunami records are also too short, have inaccurate dating, or lack continuity to determine the variability in the recurrence pattern, with few exceptions, like the seismoturbidite records from the Cascadia subduction zone (Goldfinger et al., 2012) or the Hikurangi margin (Pouderoux et al., 2012, 2014; Gomez et al., 2015). The sensitivity of the depositional environment needs to be stable and low enough to record no unwanted sedimentary signals, e.g. storms, but high enough to record each destructive tsunami. The environment also needs preservation potential for tsunami deposits, so that post-depositional processes do not rework the material. The best paleotsunami records in this regard have been produced from marshes (Cisternas et al., 2005), beach ridges (Sawai et al., 2009), coastal caves (Rubin et al., 2017) and coastal lakes (Kelsey et al., 2005; Kempf et al., 2017) with 7 to 17 recorded tsunami inundations in a single record over several thousand years. 
Here we present a new and unusual recurrence pattern of the Lake Huelde paleotsunami record of 17 events in south central Chile (Kempf et al., 2017) and then discuss the statistical robustness of the findings in light of the completeness of the record and the rupture modes involved. By statistical modelling, we explore the effect of the underlying recurrence pattern on the required amount of inter-event periods in order to describe the recurrence pattern reliably.
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Figure 1: a) Overview map of south central Chile with Lake Huelde located in the middle of the 1 m slip isoline of the 1960 Great Chilean Earthquake rupture (red overlay) (Moreno et al., 2009); b) geomorphological map of Lake Huelde near the Pacific coastline on Chiloé Island (Kempf et al., 2017); c) master core of the Lake Huelde sedimentary record with all tsunami deposits and their modelled ages (Kempf et al., 2017). The abbreviations for the event deposits (hD, hE and so on) stand for Lake Huelde (h) and a capital letter in alphabetical order with increasing age.
Previous work – seventeen tsunami deposits in Lake Huelde (Chile)
Lake Huelde is located 1.3 km landward of the west coast of Chiloé Island (Chile), the northernmost Patagonian island on the South American west coast and situated in the center of the CE 1960 Great Chilean Earthquake (M9.5) rupture zone (Fig. 1a). 
A deposit of the associated tsunami was recognized in a lacustrine sediment sequence from Lake Huelde as a mostly sandy layer with intervals of mud rip-up clasts in a matrix of sand with a fine grained mud cap at the top (Kempf et al., 2015). In the deeper sedimentary record of Lake Huelde, similar sedimentary units were identified and interpreted as tsunami deposits, too (Fig. 1b and c) (Kempf et al., 2017). The tsunami sizes recorded in the sedimentary record of Lake Huelde range from tsunamis that wash over ~6 m high dunes to small tsunamis that are merely reaching the lake through the river channel (Kempf et al., 2015, 2017). Tsunamis that do not reach the lake, though potentially posing a small, local hazard, are beyond the sensitivity limit of the record.
Radiocarbon dates provided the main source for input for two models that describe the age-depth relationship in the sediment cores (Fig. 1c and 2; Tab. S1, available in the electronic supplement to this article) (Kempf et al., 2017); one was created with the Bayesian, autoregressive accumulation rate age-depth modelling algorithm called BACON based in an R-environment (Blaauw and Christen, 2011), the other with the standalone Bayesian age-depth model algorithm called P_Sequence of the OxCal family (Bronk Ramsey, 2008). 
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Figure 2: Age-depth modeled recurrence pattern of tsunami deposits in the sedimentary record of Lake Huelde. Each inter-event period, e.g. between events hK and hJ, from young (top) to old (bottom). The overall recurrence pattern is shown on top. The solid line expresses the results of the OxCal P_Sequence and the grey areas show the results of BACON. No significant model-specific artifacts were observed. For ease of use we continued with the R-based BACON results. 
Both models were in agreement with each other without showing any model-specific artifacts. Probabilistic ages were modelled for each tsunami deposit creating a paleotsunami record of the last 5500 years. The Lake Huelde sedimentary record is the longest paleotsunami record on the entire Peru-Chile subduction zone and is in strong agreement with the previously known paleotsunami record of the past 2000 years without any over- or underrepresentation (Kempf et al., 2017). The lacustrine sediment sequence appears to be continuous and the age-control is good throughout the entire record. At present, the Lake Huelde record should be the most reliable record in the region for paleotsunami recurrence pattern reconstruction. The Lake Huelde record bears evidence of nine previously unknown tsunamis.
Methods
We use the results of Kempf et al. (Tab. S1, available in the electronic supplement to this article) (Kempf et al., 2017) to compute the modelled inter-event period between each tsunami deposit (Fig. 1 and 2). In BACON two consecutive tsunami deposit ages within each of the Markov Chain Monte Carlo iterations can be elegantly subtracted from each other to get a probabilistic description of an inter-event period between the two tsunamis. Age-reversals (i.e. negative inter-event periods) and artificially narrower or wider inter-event period distributions are avoided this way. In OxCal, we used the Difference()-function, which is designed for the same purpose (Fig. 2).

Firstly, we test for the null hypothesis of a Poisson process in the Lake Huelde paleotsunami record using the Cox and Oakes test for exponentiality. The Cox and Oakes test is one of several tests for exponentiality, but among those it has proven to be relatively powerful, if not the best, when no further information about the dataset is known, and seems to be relatively successful with smaller sample numbers (Ascher, 1990; Rahman and Wu, 2017). Essentially, the result of the Cox and Oakes test of exponentiality can reject the hypothesis of exponentiality for a dataset for both small and large results of the deviate (Fig. 3) (Cox and Oakes, 1984).
Secondly, we simulate records, sourced from six created recurrence patterns (also tested for exponentiality for reference, Fig. 3), which are a mixture of conceptual distributions (Poissonian recurrence, Gaussian recurrence, uniform recurrence) and real-world examples (exponential power model for large-scale earthquakes observed in Chilean lakes (e.g. Moernaut et al. 2018); Huelde model for tsunamis observed in coastal Lake Huelde, south central Chile (e.g. Kempf et al., 2017); supercycle model for megathrust earthquakes on the Sunda Arc in north Sumatra (e.g. Sieh et al., 2008; Philibosian et al., 2017). From the simulated records we sample synthetic sedimentary event records of 3, 6, 10, 16, 30 and 100 inter-event periods and analyze the statistical robustness of the conclusions that would be drawn from these records.
For the Cox and Oakes test and its visualization we use the R-environment and the “exptest” library (Novikov et al., 2013). The statistical modelling, its description and its visualization were written in generic R language.
The results of this study are expressed in frequency distributions. The frequencies are often not normally distributed, which is why we will not express these results in 1σ and 2σ ranges. The interquartile range (IQR) is typically used instead, i.e. the difference between the 25th and 75th percentile. To keep a reference to the often used 1σ and 2σ-ranges, we will present the 68% and 95% confidence ranges. They are the same type of data as the IQR except with boundaries at the 2.5%, 16%, 84% and 97.5% quantiles.
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Figure 3: The Lake Huelde sedimentary record (black line) is tested for exponentiality using the Cox and Oakes test (Cox and Oakes, 1984). For all 10000 samples of the record the deviate COn of the Cox and Oakes test is greater than 0, which means exponentiality, i.e. the Poissonian process, can be excluded for Lake Huelde tsunami deposits. The Cox and Oakes test was repeated for all synthetic models. Except for the Poissonian and the supercycle model all models failed the test for exponentiality.
Testing for the null hypothesis of Poissonian behavior
The computed mean inter-event period of tsunamis that reach Lake Huelde is 325 years, which is comparable to conclusions drawn from other records of this region (Cisternas et al., 2005, 2017). However, the recurrence pattern is strongly bimodal (Fig. 2). The first and narrower mode is at 115 years and the second and wider mode is at 490 years. 
Despite the obvious visual discrepancy of the Lake Huelde recurrence pattern and a generic exponential distribution, we will apply the Cox and Oakes test for exponentiality (Cox and Oakes, 1984) by simulating 10000 sets of 16 inter-event periods based on the results from the probabilistic ages of tsunami deposits from the BACON algorithm (Blaauw and Christen, 2011) in the sedimentary record of Lake Huelde (Kempf et al., 2017). All 10000 sets of simulated records are put through the Cox and Oakes test for exponentiality and the results are plotted as a histogram (Fig. 3, black line). The histogram of the test result of the Lake Huelde dataset is entirely offset from 0 towards greater numbers and therefore we can reject the null hypothesis of exponentiality of tsunami inundation in the Lake Huelde dataset. 
Since all tsunami deposits in Lake Huelde are suggested to be from near-field tsunamis (Kempf et al., 2017), it appears that the tsunamigenic earthquakes on the seismic segment of the 1960 rupture zone are not time-independent. 
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Figure 4: a) six synthetic recurrence models, all scaled to have a mean of 100 years; in b) the standard deviation is used to describe how the accuracy of the mean inter-event period of a dataset changes depending on the number of samples that are considered; c) describes how the standard deviation of a dataset approaches the standard deviation of the underlying process; d-i) illustrate how the accuracy of descriptive statistics on datasets change with sample size for the six synthetic models. Compared across the models, the Gaussian model can be accurately described with the lowest sample number. The Poissonian and supercycle model need the greatest sample numbers for accurate statistic description. 
Inter-event period modelling
For south central Chile the question remains, whether 16 inter-event periods are enough to draw a statistically robust conclusion from a dataset towards the overall recurrence pattern. To assess the reliability of geological records of events, which often suffer from low sample number, we created six recurrence models, i.e. Gaussian model, exponential power model, Lake Huelde model, uniform model, Poissonian model and supercycle model (Fig. 4a; Tab. S2, available in the electronic supplement to this article). They are all scaled to have a mean inter-event period of 100 years. However, the time unit is interchangeable, so that it can be applied to studies of other events, e.g. volcano eruptions, floods, tropical cyclones, glacial lake outburst floods, glacier surges etc. When a specific comparison is made to a real-world example it is the shape of the distribution that is meant, not the absolute values. The models are described below and the coefficient of variance is stated to compare with several statistical analyses in the literature (Fig. 4a) (Kulkarni et al., 2013; Moernaut et al., 2018):
i) Gaussian model – a normally distributed recurrence pattern with the mean of 100 years and the standard deviation of 20 years. The COV is 0.20. Example: megathrust earthquakes in Alaska (Shennan et al., 2014), in this case 6 inter-event periods.
ii) Exponential power model – we choose an exponential power distribution in order to produce a model between the normal distribution and a uniform distribution, i.e. a normal distribution with a plateau. It is defined by the mean, a scaling parameter α and a shape parameter β. If the shape parameter β = 1, it produces a Laplace distribution; if β = 2 it is a normal distribution; if β = ∞ it is a uniform distribution. We choose β = 8. The coefficient of variance in this case is 0.44. Example: seismoturbidites from Lake Calafquen (Fig. 1) (Moernaut et al., 2018), in this case 12 inter-event periods.
iii) Huelde model – this composite model consists of two gamma distributions with similar shape parameters (k1=1.7 and k2=1.75), but with a constant shift of the second distribution towards longer inter-event periods. The COV is 0.68. This case is specifically constructed to mimic the recurrence pattern found in Lake Huelde based on 16 inter-event periods (Kempf et al., 2017).
iv) Uniform model – this model has an even probability within the range of 200 years. Within its extremes it is identical to a random number generator. The COV is 0.58. This model was chosen for a statistical benchmark, not for its real-world potential and has to our knowledge no real-world example within the geosciences.
v) Poissonian model – this model is based on an exponential distribution. It is synonymous with time-independent inter-event periods. This model was included, because of its tremendous real-world use, with a COV of 1.00. Example: seismoturbidites in Lake Tutira, New Zealand (Gomez et al., 2015), in this case 118 and 24 inter-event periods.
vi) Supercycle model – this composite model consists of two normal distributions, where shorter inter-event periods (mean = 40, standard deviation =15) occur four times as often as longer inter-event periods (mean = 340, standard deviation = 50). The COV is 1.225. Example: subduction zone earthquakes on the Sunda Arc (Sieh et al., 2008; Philibosian et al., 2017), in this case 13 inter-event periods.
To compare the simulated records with the Lake Huelde record, we applied the Cox and Oakes test for exponentiality on each of the simulated records. All but the Poissonian and the supercycle model have low or no counts in the histogram bins around COn ≈ 0 (Fig. 3). The Cox and Oakes test seems to lack the power to recognize the supercycle model as non-Poissonian, however, there exists a small mode around COn =14 which would look peculiar if one were to test a supercycle dataset for exponentiality (Fig. 3). 
On the basis of all six models, we simulated 10000 records each for sample sizes of 3, 6, 10, 16, 30 and 100 inter-event periods (Fig. 4a). The greater the sample size of inter-event periods the lower the standard deviation of the mean inter-event periods (Fig. 4b) and the closer the standard deviation of the simulated records to the standard deviation of the underlying recurrence model (Fig. 4c). How well the simulated records estimate mean, median and the 68% and 95% confidence ranges over sample size is described for each model separately (Fig. 4d-i; Tab. S2, available in the electronic supplement to this article). For both the Poissonian model and the supercycle model the mean recurrence is exceptionally badly estimated for sample sizes of 3 (68% confidence range is 58 years and 71 years, respectively), 6 (68% confidence range is 41 years and 50 years, respectively) and 10 inter-event periods (68% confidence range is 32 and 39 years, respectively) (Tab. S2, available in the electronic supplement to this article; Fig. 4h and i). The standard deviations of the Poissonian model and the supercycle model become possible to be estimated with 95% certainty only beyond a sample size of 16 and 10, respectively (Fig. 4c). This result in certainty level versus sample size in the Poissonian model is comparable with the necessary sample size of >20 to estimate the variability in a Poissonian process with a 95% certainty (McCaffrey, 2008). Across all six models of recurrence patterns, the Poissonian model is the most difficult to estimate, if certainty levels above 90% are needed on the variability of inter-event periods.
Under the assumption that the resulting recurrence pattern of tsunamis inundating Lake Huelde (Fig. 2) is correct, the Lake Huelde record should be interpreted to be within 17% (55 years in the case of Lake Huelde) and 33% (107 years) of the mean with a 68% and 95% confidence range, respectively (Fig. 4f). 
Approaching the statistical model results from a planning point of view of a geoscientist, one could say that if the investigated process is expected to be similar to the Huelde model, then the result should be within the 68% confidence range of the real process with ~88% certainty with a sample size of 16. If the investigated process is expected to be similar to the Gaussian model, then the result should be within the 68% confidence range of the real process with ~88% certainty with a sample size of only 3. From a civil authorities point of view, to achieve an 80% certainty to be within the 68% confidence range of the model, one would need n  3 for the Gaussian model, n > 3 for the exponential power model, n > 6 for the uniform model, n > 10 for the Huelde model, n > 16 for the Poissonian model and n > 30 for the supercycle model (Tab. S2, available in the electronic supplement to this article). 
Recurrence pattern of tsunamis in south central Chile
The first mode of the bimodal recurrence pattern at 115 years (Fig. 2) is comparable to the historical 128 ± 31 years mean recurrence time of megathrust earthquakes in the same region (Lomnitz, 1970, 2004; Nishenko, 1985), while the second mode at 490 years is in agreement to the expected 500 years recurrence time of full segment ruptures with patches of 40 m of slip, like the CE 1960 earthquake (Cifuentes, 1989; Moreno et al., 2009; Moernaut et al., 2014). More recent findings of two separate and time-dependent earthquake recurrence patterns in the CE 1960 rupture zone suggest recurrence times of 139 ± 69 years and 292 ± 93 years for M≥7.7 and M≥8.6 earthquakes, respectively (Moernaut et al., 2018). In the Lake Huelde record, we cannot make a distinction between earthquake or tsunami magnitudes, because the tsunami deposits can exhibit strong spatial variability (Kempf et al., 2015). 
The bimodality of the recurrence pattern of tsunamis inundating Lake Huelde is statistically robust. The bimodality can be explained in three different ways. Firstly, data may be missing. This seems unlikely, due to the strong agreement between the Lake Huelde record and the historical and sedimentary records during the last ~2000 years from other areas without over- or underrepresentation (Kempf et al., 2017). Furthermore, the youngest 8 tsunami deposits of the last ~2000 years from Lake Huelde can be correlated to coastal subsidence, and therefore to near-field events in Maullín, 110 km north of Lake Huelde (Fig. 1) (Cisternas et al., 2005). 
Secondly, meteorite impacts, purely landslide related and other triggers as tsunamigenic processes could superimpose and cause bimodality. These triggers can be excluded, because there are no known candidates, and should they have occurred in the past 5500 years, it would most likely be a singular event in the record. It is possible that far-field tsunamis from other subduction zone segments across the Pacific are among the tsunami sources. However, in recent history, e.g. CE 1946 Aleutian Islands, CE 1952 Kamchatka, CE 1964 Alaska, CE 2010 Maule, CE 2011 Tōhoku, none of the giant Pacific tsunamis caused inundation into Lake Huelde or had a significant effect elsewhere on the coast of Chiloé Island. If tsunami deposits with far-field sources exist in the Lake Huelde record, it would make the recurrence of local tsunamigenic earthquakes longer. However, the hazard emanating from extreme waves – far-field or near-field – on the south central Chilean coast would remain the same. 
Thirdly, the tsunamigenic earthquakes may be a process that is inherently bimodal in south central Chile, controlled by temporal and spatial variability in multiple rupture modes on the megathrust. The various rupture modes could have unimodal recurrence patterns. This appears to be the most plausible hypothesis, because of precedence in south central Chile and on other subduction zones. 
The seismic rupture potential related to the megathrust in south central Chile varies along-strike and down-dip. The along-strike variations are controlled by asperities of various sizes with various inter-event periods (Moreno et al., 2018) causing along-strike segmentation, often following patterns of inter-seismic coupling, e.g. on the Peru-Chile (Moreno et al., 2011), the Sunda Arc (Chlieh et al., 2008) and the Kamchatka subduction zones (Bürgmann et al., 2005). In south central Chile, the down-dip zonation is inferred to be controlled by fluid pressure originating from the slab to Moho contact zone influencing the deepest seismogenic zone to be able to rupture with shorter inter-event periods (~60 years) and lower magnitude (M7-8) compared to the shallower seismogenic zone (>110 years; M8-9) (Moreno et al., 2018). Both along-strike and down-dip segmentations can be overcome in great 1960-style earthquakes (Moreno et al., 2018) causing giant trans-Pacific tsunamis. 
Further variations in tsunami generation could stem from splay fault ruptures, which have been documented on the Chilean subduction zone around Santa Maria Island (Melnick et al., 2012), and which tend to be very tsunamigenic (Moore et al., 2007). Tsunami earthquakes that rupture only the most up-dip zone of the megathrust with comparatively low magnitude but high tsunamigenic potential like the 2010 Mentawai rupture on the Sunda Arc (Lay et al., 2011) have not been recorded on the Chilean subduction zone so far. We interpret the varying and possibly complex recurrence patterns of each of these processes on or near the megathrust to control the overall bimodal recurrence pattern of tsunamis that inundated Lake Huelde. 
Classifying the earthquake of each tsunami deposit would allow an analysis of the recurrence patterns of separate rupture modes. However, additional paleoseismic information needed to estimate rupture width and length, location and slip distribution would be needed for that. This information may be acquired by integrating this and other paleotsunami and paleoseismological records with new long records of shaking and coastal deformation. 
Implications for hazard assessment
The mean recurrence time loses meaning for hazard assessment in face of strongly bimodal recurrence patterns of tsunamigenic subduction zone earthquakes. In fact, in the case of tsunami inundation in Lake Huelde the mean is close to the anti-mode at 315 years, i.e. the least likely recurrence time between the two modes. The implications of the recurrence pattern are clear. The shortest recurrence period in Lake Huelde has a median of ~60 years. Similar to Moreno et al. (2011) and Moernaut et al. (2018), we find in the Lake Huelde record that the subduction zone in south central Chile may already have the potential to produce a tsunamigenic earthquake.
The probability of an event in the next 50 years with the Lake Huelde record recurrence pattern is at 11.6%. This compares well to 14.4% when assuming Poissonian behavior with the mean derived from the Lake Huelde record and it deviates from the 5.6% when assuming a normal distribution with a mean and standard deviation derived from the Lake Huelde record. However, assuming no event occurs in the next 250 years, the probability for a tsunami in the next 50 years, i.e. in the period from 308 to 358 years after the last event, is much lower with the Lake Huelde recurrence pattern at 5.2%, which in turn is much lower than the probabilities for a tsunami in the same period for a Poissonian process at 14.4% and a normally distributed process at 17.7%.
In terms of hazard assessment and risk management in south central Chile, we would argue against the current best practice to report mean inter-event periods as a measure for tsunami hazard. Considering that many subduction zones lack sufficient evidence for simple recurrence patterns, it should be best practice in any region to express mean inter-event periods with an assessment of the most likely underlying process distribution, e.g. subduction zone earthquakes occur periodically with a mean inter-event period of 594 ± 156 years in south Alaska (Shennan et al., 2014).
The statistical exploration of the inter-event period data has shown that there are vast differences in the required number of inter-event periods dependent on the underlying process. As we cannot know the underlying process from low sample size records, we would advise caution when deriving mean inter-event periods from a few inter-event periods. This conclusion can be expanded geographically beyond south central Chile and to various recurring phenomena, because other processes than tsunamis and large earthquakes behave this way. However, if the investigated process falls within the spectrum of recurrence patterns presented here (Fig. 4a), then the prerequisites for a robust recurrence pattern analysis are i) good age control, ii) a stable sensitivity of the record to be impacted by and preserve traces of the event, iii) continuity in the record, and finally iv) a sufficient sample size given the expected underlying process.
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Supplementary information - tables
Table S1: age information on the Lake Huelde paleotsunami record, with mean and standard deviation. The 2.5% and 97.5% quantiles represent the boundaries of the 95% confidence range. The 16% and 84% quantiles represent the boundaries of the 68% confidence range. 
[image: ]


Table S2: Descriptive statistics of all synthetic records of various sample sizes. All synthetic records are scaled to a mean of 100 years, therefore the difference to 100 years can be read as a number in percentage. The 2.5% and 97.5% quantiles represent the boundaries of the 95% confidence range. The 16% and 84% quantiles represent the boundaries of the 68% confidence range. The 25% and 75% quantiles represent the boundaries of the interquartile range. The 50% quantile is identical to the median. 
[image: ]
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sample size mean SD 2.5% 16% 25% 50% 75% 84% 97.5%

Gaussian model n=3 99.8 11.5 77.7 87.9 91.9 99.9 107.7 111.4 122.7
n=6 100.1 8.1 84.0 92.2 94.7 100.1 105.5 108.2 116.0

n=10 99.9 6.3 87.7 93.6 95.6 99.9 104.1 106.1 112.2

n=16 100.0 5.0 90.2 95.1 96.6 100.0 103.4 105.0 109.8

n=30 100.0 36 93.0 96.5 97.6 100.0 102.4 103.6 107.1

n =100 100.0 2.0 96.1 98.0 98.7 100.0 101.4 102.0 104.0

exponential power  n=3 100.1 25.3 51.4 74.0 82.4 100.0 118.0 126.2 148.8
model n=6 99.9 17.8 65.7 81.9 87.6 99.9 111.9 117.6 135.2
n=10 99.9 13.8 73.2 86.1 90.4 99.9 109.4 113.7 127.0

n=16 100.0 10.9 78.7 88.9 92.5 100.1 107.3 110.7 121.4

n=30 100.0 7.9 84.5 92.3 94.8 100.0 105.3 107.9 115.5

n =100 100.0 43 91.5 95.7 97.1 99.9 102.9 104.3 108.4

Huelde model n=3 101.0 39.1 26.1 61.1 72.6 100.5 127.4 140.7 179.9
n=6 100.0 27.5 488 72.1 80.5 99.2 118.8 128.0 154.6

n=10 100.1 21.6 59.3 78.5 85.1 99.6 114.6 121.9 143.0

n=16 99.8 16.9 67.1 83.1 88.3 99.7 111.1 116.7 133.6

n=30 100.0 12.4 75.5 87.6 91.5 100.0 108.3 112.3 124.9

n =100 100.0 6.8 86.9 93.3 95.4 99.9 104.6 106.8 113.3

uniform model n=3 100.4 33.2 37.1 66.1 76.9 100.0 124.5 134.7 165.0
n=6 100.1 23.4 54.2 76.3 84.1 100.1 116.7 123.8 145.3

n=10 100.2 18.0 64.8 82.2 88.3 100.1 112.7 118.4 135.5

n=16 100.0 14.5 71.7 85.6 90.2 100.0 109.7 114.4 128.6

n=30 99.8 10.5 78.9 89.4 92.8 99.8 106.9 110.3 120.4
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Poissonian model n=3 100.3 58.5 20.3 45.5 57.1 88.9 130.7 155.1 245.0
n=6 100.1 41.0 37.0 60.5 70.5 94.5 124.0 139.8 197.0

n=10 100.5 32.0 486 69.5 77.5 97.2 119.2 131.7 171.9

n=16 99.8 25.0 56.5 74.8 82.0 98.0 115.7 124.6 152.5
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n=6 99.5 49.2 32.1 41.8 51.4 92.7 135.3 147.4 205.9
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n=16 99.7 30.7 44.1 70.2 77.7 97.0 118.9 130.3 164.9
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n = 6 99.5 49.2 32.1 41.8 51.4 92.7 135.3 147.4 205.9

n = 10 100.1 38.4 36.3 64.6 70.8 98.5 126.6 137.5 182.1

n = 16 99.7 30.7 44.1 70.2 77.7 97.0 118.9 130.3 164.9

n = 30 100.3 22.4 59.9 78.1 84.4 99.2 115.1 123.0 146.4

n = 100 99.9 12.2 77.2 87.6 91.4 99.5 108.1 112.2 124.5

exponential power 

model

quantiles


image1.emf
age (cal. years BP)
.. 5000, 4000, 3000 2000, 1000 9@

: imaster core | : l
1960 Lake Huelde: : l
1837 i 5 ' '

15?5 é ; E é [l;

i

Lake Hueld
Kempf et
2017

pth (m)

core de

~
-42°35.5'S

+ | tsunami [ mud cap
hO: * | deposit [_Isand_ :
hP: : I mud rip-up clasts :

in sandy matrix

42°36.0'S
o3
88

. (Il homogenous
ovtta {- laminated :
: modelled tsunami |
: deposit age
hQ H distribution

[Jlake/river/ocean [(]beach

I dunes [Ehigh terrain

[ freshwater marsh

®e core sites « road and houses

"5000 4000 3000 2000 1000 0








			Page 1







~

6

.

8

c

m

/

yr

Nazca

Plate

Chile

1960

rupture

zone

Lake Huelde

Kempf et al.,

2017

Lake Calafquen

Moernaut et al., 2018

South

American

Plate

lake/river/ocean

freshwater marsh

dunes

beach

high terrain

core sites

 road and houses

2

4

6

8

10

42°36.0'S

1 km

Lake

Huelde

P

a

c

i

f

i

c

O

c

e

a

n

7

4

°

0

7

'

W

Pos18

Pos15

42°35.5'S

7

4

°

0

8

'

W

N

b

a

b

c

hP

hO

hQ

hF

1575

hD

hE

1960

1837

hG

hH

hI

hK

hL

hM

hN

hJ

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

9

10

1

2

3

4

5

6

7

8

c

o

r

e

 

d

e

p

t

h

 

(

m

)

age (cal. years BP)

mud cap

mud rip-up clasts

in sandy matrix

homogenous

laminated

tsunami

deposit

gyttja

sand

modelled tsunami 

deposit age 

distribution

master core 

Lake Huelde

0

40°S

42°S

44°S

38°S

74°W

72°W

76°W


image2.emf
recurrence time
AD1 837- (years

0 2b0 400 600 800 1000
I 'ADi960 | (years) !
|

I
I | AD1575-AD1837 |
] ]
! \B_/AB1 575 | | OxCal £
ﬁ D : : Bacon
] I
‘ . AEhE
I
i

KP-hQ I | | median ~760 yrs








			Page 1







0 200 400 600 800 1000

~115 yrs

~490 yrs

recurrence time

(years)

OxCal

Bacon

hD-AD1575

hE-hD

hF-hE

hG-hF

hH-hG

hI-hH

hJ-hI

hK-hJ

hL-hK

hM-hL

hN-hM

hO-hN

hP-hO

hQ-hP

mean:

~325 yrs

median

~60 yrs

median ~760 yrs

AD1575-AD1837

AD1837-

AD1960


