

Operational Directorate Natural Environment OD Nature | OD Natuur | DO Nature

Discriminating birds from noise in bird radar data from an offshore wind farm

Brabant Robin¹, Andreas Smith², Javier Vidao², Jesse Lewis², Steven Degraer¹

¹ Royal Belgian Institute of Natural Sciences (RBINS), Operational Directorate Natural Environment (OD Nature), Marine Ecology and Management (MARECO), Gulledelle 100, 1200 Brussels, Belgium ² DeTect, Inc. 1022 West 23rd St., Suite 620, Panama City, FL 32405, USA

Introduction

- MERLIN dual solid-state radar system installed offshore on the North Sea to study the impact of offshore wind farms on birds.
- Vertical Scanning Radar: registers flight altitudes and flux of birds (number of birds/km/hour), while the Horizontal Surveillance Radar registers flight paths and flight directions of birds in the wind farm and its vicinity.
- Not only birds are detected by radar, but also undesired radar echoes such as weather, waves and radar interference. Rain and waves result in large amounts of noise in the database.
- These undesired radar echoes are referred to as **noise** or **clutter**.

Goals of this study:

1) To develop an analytical procedure to effectively filter clutter (i.e. data mining); 2) to determine the real-time flux of birds in the wind farm area at different altitudes and to calculate a real-time collision risk.

MERLIN bird radar on the offshore platform in the C-Power wind farm

stores them in separate reference databases.

REFERENCE D	ATA		
SIDELOBES			
	64065	YES	
	67720	NO	
WEATHER			
	160026	YES	
	68841	NO	
BIRDS			
	67720	YES	
	78779	NO	

Step 2 - Model Building: SQL Data Mining models analyze the reference databases and identifies discriminating variables between bird types and other target types.

SIDE LOBES, WEATHER, BIRDS, OTHER **NEATHER, BIRDS** OTHER **BIRDS**, OTHER BIRDS ENTIRE BIRD OTHER TRACKS

<u>Step 3 – Model Testing:</u>

SQL Data Mining models are tested on archived bird radar data and the results are analyzed to determine success. Two types of tests were performed:

- In Sample Tests are performed on the reference data, therefore Ο it is the first test of the data mining model to confirm model accuracy and effectiveness.
- Out of Sample Tests are performed on archived data to confirm 0

CLASSIFICATION			CLASSIFICATION		
ALL	53631	28622	ALL	193996	69196
ALL Track IDs > 1 Row	36454	11445	ALL Track IDs > 1 Row	162547	37747
Bird Target Type	1791	247	Bird Target Type	9427	836
Other Target Type	34663	11198	Other Target Type	153120	36911
OUT OF SAMPLE TEST			OUT OF SAMPLE TEST		
Bird Target Type - MODEL	2441	301	Bird Target Type - MODEL	10766	1395
Bird Target Type - BIOLOGIST	1791	247	Bird Target Type - BIOLOGIST	9427	836
DATA MINING ERRORS			DATA MINING ERRORS		
Bird Target Type - MODEL			Bird Target Type - MODEL		
difference from BIOLOGIST	573	57	difference from BIOLOGIST	1200	472
Bird Target Type - BIOLOGIST			Bird Target Type - BIOLOGIST		
difference from MODEL	182	48	difference from MODEL	133	37
Unknown Target Type -			Unknown Target Type -		
MODEL	258	45	MODEL	272	124
OUT OF SAMPLE SUCCESS			OUT OF SAMPLE SUCCESS		
Bird Target Type - Success	89.84%	80.57%	Bird Target Type - Success	98.59%	95.57%
Bird Target Type - Error	10.16%	19.43%	Bird Target Type - Error	1.41%	4.43%
Other Target Type - Success	97.60%	99.09%	Other Target Type - Success	99.04%	98.39%
Other Target Type - Error	1.65%	0.51%	Other Target Type - Error	0.78%	1.28%
Unknown Target Type	0.74%	0.40%	Unknown Target Type	0.18%	0.34%
ALL TARGETS		NO SIDELOBES	1 ALL TARGETS	2	NO SIDELOBES
				The second	

the data mining models accuracy and effectiveness on real-world data.

Conclusions

- The model effectively filters clutter from the vertical bird radar data, without losing significant numbers of bird targets.
- Quality control of the model so far results in a success rate of 89.8 to 98.6% for the bird targets and 97.6 to 99.0% for all other targets.
- What is next?
 - The model algorithm will be applied in real time processing of bird radar data before storing them in the database.
 - The filtered data will result in an improved registration of the bird flux in the wind farm and therefore an improved assessment of the collision risk for birds, based on the bird flux at rotor swept height.

Trackplot visualization of the data mining filtering steps on vertical scanning radar data from 13th and 17th of April 2014