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1. The hydrodynamic model mu-BCS 
The twodimensional hydrodynamic model mu-BCS calculates the depth-integrated 
water currents and elevation on the model grid under the influence of tides and 
meteorological influences. The long wave equations are calculated using a semi-implicit 
finite difference method on a Arakawa-C model grid. (Yu et al., 1989, 1990; Ozer et al., 
1990; Yang et al., 1991; Ozer, 1994). The bottom shear stress is calculated using a quadratic 
friction law.  
 
The model is implemented on a model grid that comprises the entire Belgian Continental 
Shelf. The resolution is 5’/21=14.29’’ in longitude (272 m – 278 m) and 2.5’/18 = 8.33’’ in 
latitude (257 m). The model has 538 x 396 grid cells. The bathymetry is shown in Error! 
Reference source not found.. At the open sea boundaries, the model is coupled with the 
OMNECS model, with a resolution of 5’ in longitude and 2,5’ in latitude (5.83 km x 4.63 km 
on 51°N). The model comprises the complete Northwest European Continental Shelf froml 
48°N to 62°N and from 12°W to 13°O. The westside of the model is the 200m contour line. 
The model is driven by four semi-diurnal (M2, S2, N2, K2) and four diurnal (O1, K1, P1, Q1) 
harmonic components.  

 

Figure 1: Bathymetry of the two-dimensional mu-BCS model. The green polygons are the PEZ area.  
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2. The wave model WAM 
For the calculation of the waves, the implementation of the WAM model for the Belgian 
coastal waters is used. The WAM model is a third generation wave model, developed by 
the WAMDI Group (1988) and described by Günther et al. (1992). The WAM model is 
used both for research and for operational wave forecasting. It includes ‘state-of-the-art’ 
formulations for the description of the physical processes involved in the wave evolution. 
In comparison with the second generation model, the wave spectrum has no restrictions 
and the wind sea and the swell spectrum are not treated separately.  
 
At RBINS, the model is running on three coupled model grids. A Coarse model grid 
comprises the entire North Sea, the Fine model models the central North Sea and the 
Local model calculates the waves in the Southern Bight. More information can be found 
in Van den Eynde (2013).  
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3. The sedimenttransport model mu-SEDIM 
The MU-SEDIM sediment transport model is implemented on the same grid as the mu-
BCS hydrodynamic model and calculates the total load under the influence of the local 
hydrodynamic and wave conditions. The current bottom stress, one of the most 
important driving forces, is a function of the depth-averaged current velocity, the wave 
parameters and of the Nikuradse bottom roughness. For the calculation of the Nikuradse 
bottom roughness, a distinction was made between the skin friction and the total friction. 
The skin friction is the roughness experienced by the sediments at the bottom and is 
calculated by using the expression of Engelund and Hansen (1967). The total friction is 
the friction experienced by the currents and is influenced by the bottom load and the bed 
forms (Smith and McLean, 1977).  The calculation is based upon Grant and Madsen 
(1982). The bottom stress under the influence of currents and waves is based upon the 
formula of Bijker (1966). The formula of Ackers and White (1973) was used for the 
sediment transport calculations, because it yielded the best results in a comparison 
carried out by Sleath (1984). This equation was adapted by Swart (1976, 1977) to include 
the effects of waves on sediment transport.  
 
Finally, the model calculates the evolution of the bottom (erosion/sedimentation), using 
a continuity equation for the bottom sediments (Djenidi and Ronday, 1992). More details 
on the equations implemented in the MU-SEDIM model can be found in Van den Eynde 
and Ozer (1993) or in Van den Eynde (2003).   
 
One of the the input parameters for the MU-SEDIM transport model is the median grain 
size diameter D50 (and some derived grain sizes). The D50 was taken from Verfaillie et 
al. (2006). and refined in the framework of the TILES project (Van Lancker et al., 2019). 
The map of the D50 for the entire Belgian Continental Shelf (BCS) and for the PEZ is 
shown in Error! Reference source not found. and Error! Reference source not found..  
 
The MU-SEDIM model has already been applied at the kink of the Westhinder Bank, a 
sandbank at the Belgian continental shelf, north of the Kwinte Bank (Deleu et al., 2004) 
and the model results agreed well with the transport pathways, derived from the 
observations, e.g., from the asymmetry of the sand dunes. The model was applied to 
model the effect of sand extraction on sand banks (Van den Eynde et al., 2010; Giardino 
et al., 2010) and in the framework of the MAREBASSE project (Van Lancker et al., 2007).  
 
More recently, new calculation of the bottom shear stress were implemented in the 
model, based on measurements of the bottom shear stress (Van den Eynde, 2015, 2016a, 
2016b, 2017). It was shown that the Bijker model doesn’t give realistic results for the 
bottom shear stress under the influence of waves with very small currents.. Additionally, 
no formulation was given for the mean bottom shear stress over a wave cycle, taking 
intoaccount the increase in mean bottom shear stress under the influence of currents, 
when waves are available. Furthermore, recently, more realistic and simple models for 
the combined bottom shear stress were proposed in literature. Therefore, three new 
formulations were implemented and tested: the Soulsby (1995), Soulsby and Clarke 
(2005) and Malarkey and Davies (2012) were implemented. These last two models also 
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give a formulation for the maximal bottom shear stress during a wave cycle, and the mean 
bottom shear stress, averaged over a wave cycle. Furthermore, the theory was developed, 
both for flow over rough and over smooth bottom. Also more methods to calculate the 
ripple configuration and the bottom roughness were implemented. The first model uses 
the ripple geometry, proposed by Soulsby (1997) for the current-dominated ripples and 
the ripple geometry, proposed by Grant and Madsen (1982) for the wave-dominated 
ripples. More recently, a new ripple predictor was proposed by Soulsby and Whitehouse 
(2005). More information can be found in Van den Eynde (2015).  
 
Validation of the different methods using measurements of bottom shear stresses (Van 
den Eynde, 2015, 2016a, 2016b) showed that similar results were obtained with the 
different models, but the best results seems to be given by the Soulsby (1995) model. 
Furthermore, the best results were obtained with a bottom roughness of 0.01 m, which is 
relatively high. In the present exercise, the Soulsby (1995) model is used with a bottom 
roughness of 0.01 m.  
 

Figure 2: Median grain size diameter on the Belgian Continental Shelf. The green polygons are the PEZ 
area.  
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Figure 3: Median grain size diameter around the PEZ. The green polygons are the PEZ area.  
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