
Classification of Multibeam Sonar Image
Using the Weyl Transform

Ting Zhao1,2(B), Srđan Lazendić2,3, Yuxin Zhao1,
Giacomo Montereale-Gavazzi4,5, and Aleksandra Pižurica2

1 College of Automation, Harbin Engineering University, Harbin, China
{zhaoting,zhaoyuxin}@hrbeu.edu.cn

2 Department of Telecommunications and Information Processing, TELIN-GAIM,
Ghent University, Ghent, Belgium

{Srdan.Lazendic,Aleksandra.Pizurica}@UGent.be
3 Department of Mathematical Analysis, Ghent University, Ghent, Belgium

4 Operational Directorate Natural Environment,
Royal Belgian Institute of Natural Sciences, Brussels, Belgium

gmonterealegavazzi@naturalsciences.be
5 Renard Centre of Marine Geology Department of Geology,

Ghent University, Ghent, Belgium

Abstract. In this paper we develop a novel classification method for
multibeam sonar images based on the Weyl transform. The texture
descriptor based on Weyl coefficients describes effectively the multiscale
correlation features appearing in the sonar images. Our classification
approach combines the Weyl coefficients with statistical features that
are commonly used in the analysis of seabed sonar images and cap-
tures the morphological variation and geoacoustic characteristics of the
seafloor. We employ a neural network as a classifier. The proposed com-
bined feature extraction method demonstrates better performance than
the commonly used statistical methods in this application.

Keywords: Multibeam data processing · Multibeam sonar image ·
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1 Introduction

Backscattering from the seafloor is the result of an intricate interaction of the
sound pulse with the water-sediment interface and relates to three basic quan-
tities: the acoustic impedance contrasts between the propagation and sediment
media, the volume inhomogeneity and the roughness. Due of this, backscatter
directly relates to the seafloor nature and such hydroacoustic measurements can
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be used to characterise it in the interest of geology, sedimentology and biol-
ogy [1,2]. A conventional multibeam echosounder system is capable of collecting
backscatter data and bathymetry data, from which we are able to obtain a vari-
ety of features of the seabed to distinguish the sediment type [3,4]. Texture-based
techniques rely on the extraction and characterization of the textural informa-
tion of each seabed type. All state-of-the-art methods, in order to have a reliable
texture analysis, remove the angular dependency on each analysis zone which
shares the same backscatter profile [5]. A well-established approach currently
is to use the first-order [6] and the second-order statistical features [7]. The
objective of this study is to develop more effective feature extraction methods
to improve the reliability of acoustic sediment classification.

Recent studies have demonstrated that the Weyl transform [8,9] offers an
excellent framework for data representation and texture analysis in general. The
main contribution of this paper is to explore the potential of seabed sediment
classification based on the Weyl transform. Furthermore, we develop an effec-
tive classification method for sonar images that combines the Weyl features and
complementary statistical features, which are capturing the morphological vari-
ation and geoacoustic property. The experimental results show clearly that the
proposed combined textural descriptor can effectively discriminate between the
different classes of sediment. The paper is organized as follows: Sect. 2 reviews
briefly the Weyl transform theory. Next, in Sect. 3 we present our proposed
method for texture characterization of multibeam sonar images. The experiment
results are presented in Sects. 4 and 5 concludes the paper.

2 Weyl Transform

The Weyl transform has recently shown remarkable results in the context of tex-
ture classification with standard texture images [8], outperforming some com-
mon textural descriptors including HOG [10] and LBP [11]. The transform has
a desirable property of being invariant to a large class of multiscale signed per-
mutations. In particular, different ways of orienting and translating the same
texture will produce the same Weyl descriptor and patches sampled from the
same texture should share similar Weyl transforms [8,12].

2.1 The Binary Heisenberg-Weyl Group

The binary Heisenberg-Weyl group HW2m is a group of permutation matrices
and matrices that resemble permutation matrices with sign changes in some of
the rows. Those square matrices of size 2m exist for each power of 2 and are
defined as tensor products

D(a, b) = D(a, 0)D(0, b) = xam−1zbm−1 ⊗ · · · ⊗ xa0zb0 . (1)

where

x =
[
0 1
1 0

]
, z =

[
1 0
0 −1

]
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and a = (a0, . . . , am−1), b = (b0, . . . , bm−1) ∈ Z
m
2 are two binary m-tuples.

Formally, the binary Heisenberg-Weyl group HW2m of order 22m+2 is defined
as HW2m = {iλD(a, b) | λ ∈ {0, 1, 2, 3} and a, b ∈ Z

m
2 }.

2.2 The Weyl Representation

As shown in [8], the signed permutation matrices D(a, b) with aT b = 0 form an
orthonormal basis of the vector space of real square symmetric matrices with
respect to the inner product given by 〈R,S〉 := tr(RT S). In particular, each
real symmetric matrix R can be represented as a linear combination of the basis
elements as

R =
∑

a,b∈Z
m
2

abT=0

{
1

2m/2
tr [R · D(a, b)]

}
1

2m/2
D(a, b). (2)

Given a vectorized signal y ∈ R
2m , it’s covariance matrix yyT ∈ R

2m×2m is real,
symmetric matrix and as such can be represented as

yyT =
∑

a,b∈Z
m
2

abT =0

{
1

2m/2
tr

[
yyT · D(a, b)

]} 1
2m/2

D(a, b)

=
∑

a,b∈Z
m
2

abT =0

ωa,b(y)
1

2m/2
D(a, b).

(3)

Coefficients ωa,b(y) are the Weyl coefficients of the signal y and the corresponding
isometric mapping yyT �→ ωa,b(y) is the Weyl transform [8].

3 Methodology

3.1 Texture Descriptor Based on Weyl Transform

The Weyl transform distinguishes the different textural structures by quantify-
ing multiscale symmetry features [9]. Moreover, invariance to multiscale trans-
formations ensures that the Weyl representation of image patches with the same
textural structures exhibit similarity.

We divide the whole multibeam sonar image into a number of small patches
using a moving window of size Sw × Sw (Sw = 2r, r ∈ Z

+). Each patch can
be vectorized in a raster-scanning fashion which results in S = 22r dimensional
vector. Let m = 2r, a = (am−1 . . . a0)T and b = (bm−1 . . . b0)T . Then the Weyl
coefficients of patch Y are computed by using (3). Figure 1 shows how we obtain
the Weyl representation of a selected patch from a multibeam backscatter image.

An ideal texture descriptor should represent the samples of the same class with
a compact and isolated cluster. We randomly select 800 patches of size 8× 8 from
4 classes of multibeam backscatter images and compute the Weyl coefficients of
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Fig. 1. Computation of the Weyl coefficients for a sonar image.
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Fig. 2. Weyl coefficients with the dimension reduced to 2 using PCA.

all samples. For visualization purpose, we use PCA to reduce the dimensional-
ity of the 4096-dimensional feature vector to two-dimensional one. Figure 2 shows
the backscatter patches represented in Weyl coefficients after the dimensional-
ity reduction. Different colors correspond to different seabed sedimentary classes:
Sand (S, blue), Gravelly Sand (GS, green), Muddy Sand (MS, magenta), Sandy
Mud (SM, red). This example shows that the proposed texture descriptor based
on the Weyl transform discriminates well between GS/MS/SM and GS/S/SM
classes, but not between S and MS classes. Due to the fact that sand and muddy
sand show similar textures and similar distributions of pixel values (Fig. 3), the
Weyl descriptor is not able to discriminate well between those two classes.

3.2 Combined Features for Multibeam Sonar Image

The Weyl transform captures textural characteristics more related to the local
correlation. A complementary approach is to extract features, which mainly
reveal the global zonal characteristics. Hence, we adopt statistical methods
to extract characteristic features of the sonar image, that we refer to as
Classical Statistical Features. In particular, we include: first-order statistics
(backscatter-based), second-order statistics (backscatter-based) and terrain
characterization (bathymetry-based).
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Fig. 3. Boxplot of the distribution of greyscale values for different sediments.

We calculate the first-order statistics from local patches using zonal statistics,
including mean, maximum, minimum, quartile, standard deviation, kurtosis and
skewness [6]. The second-order statistics are calculated from the Grey Level Co-
occurrence Matrices (GLCM) [7]. We derive the entropy and homogeneity from
the GLCM. Terrain modeling based on multibeam bathymetry data can make a
significant contribution to the prediction of benthic habitat. The adopted terrain
features include slope, rugosity and benthic position index [13,14]. We apply the
feature selection algorithm of Boruta [15] to reduce the feature set to the more
discriminative ones. Then the resulting most relevant statistical features are
combined with the Weyl coefficients to generate a feature vector by stacking all
the components. We normalize the features such that they are in the same range
and thus contribute appropriately to the classification result.

4 Experimental Results

4.1 Dataset

We use the data set from a hydroacoustic survey conducted by Royal Belgian
Institute of Natural Sciences in Oostende Harbour, Belgium, in November 2017.
The multibeam data originates from the Kongsberg Maritime EM2040 dual sys-
tem installed on RV Simon Stevin and were acquired at 300KHz in normal mode,
CW pulse form and 101µs pulse length [16]. Backscatter and bathymetry data
are both with a 1m horizontal resolution (Fig. 4). The ground-truth data are col-
lected from a number of grab samples, including Sand, Sandy Mud, Muddy Sand
and Gravelly Sand. We demarcate 12 subblocks on the surveyed area, where the
sediment type is already known by grab sampling analysis. Then we take 8 × 8
patches by overlapping sampling with a sliding step of 4 pixels from each of sub-
block and 17622 samples are available in total. In the experiments, we randomly
take 1000 samples for every class of the sediment, including backscatter data,
bathymetry data and their labels. The training set contains 200×4 samples and
testing set contains another 800 × 4 samples, which are both randomly taken
from the whole dataset.
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Fig. 4. (a) backscatter data and grab samples; (b) bathymetry data.

4.2 Results

To validate the performance of the proposed texture descriptor, we perform sed-
iment classification on multibeam sonar images by feeding the combined Weyl-
Statistical features to a 2-layer neural network. Each test patch is assigned to
a sediment type. We compare the performance of Classical Statistical Features
alone, Weyl coefficients alone and the Combined Features. From Sect. 3 we know
that Classical Statistical Features are extracted both from backscatter data and
bathymetry data, while the Weyl coefficients are computed only using backscat-
ter data. Even though the bathymetry data is not used, Tables 1 and 2 indicate
that the Weyl coefficients can isolate distinct sediment types with comparable
accuracy as the Classical Statistical Features. Table 3 shows the classification
accuracies using the combined Classical Statistical Features and Weyl Trans-
form Features. The results in Fig. 5 show that the combined features significantly
improve the classification accuracy for the sand class, compared to the first two
methods. The overall accuracy of the combined method is also better than any
single method.

Table 1. Classification results using Classical Statistical Features.

Ground truth Prediction
S GS MS SM Total Accuracy

S 384 71 324 21 800 48%
GS 13 774 13 0 800 97%
MS 73 3 724 0 800 91%
SM 62 0 12 726 800 91%
Total 532 848 1073 747 3200 82%
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Table 2. Classification results using Weyl Transform Features.

Ground truth Prediction
S GS MS SM Total Accuracy

S 416 45 300 39 800 52%
GS 62 732 6 0 800 92%
MS 112 0 688 0 800 86%
SM 48 0 0 752 800 94%
Total 638 777 994 791 3200 81%

Table 3. Classification results using Combined Features.

Ground truth Prediction
S GS MS SM Total Accuracy

S 579 25 179 17 800 72%
GS 85 713 2 0 800 89%
MS 131 0 669 0 800 84%
SM 13 0 10 777 800 97%
Total 808 738 860 794 3200 86%
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Fig. 5. Classification accuracy of the three feature extraction methods.

5 Conclusion

We designed a novel feature extraction method for seabed sediment classification
based on the Weyl transform. We showed that the Weyl coefficients of multibeam
sonar images can discriminate between different classes of sediment. We also
proposed a combined feature extraction method based on the Weyl transform
and Classical Statistical Features to capture better the characteristics of the
seafloor both locally and globally. The combined feature vector proves to be
more powerful in the classification of sediments than the Weyl transform alone or
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statistical features alone. Examples on Oostende Harbour dataset demonstrate
the efficiency of the proposed feature extraction method for seabed sediment
classification using multibeam sonar images.
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