
Therefore, measuring genetic variations and the influence
of the environment, we can make inferences on the biol-
ogy of the species (SUNNUCKS, 2000; FÉRAL, 2000).

Bioluminescence is the capability of living organism to
produce visible light (HASTINGS & MORIN, 1991). This
amazing phenomenon is commonly observed in echino-
derms where more than 40% of the luminous species are
ophiuroids (HERRING, 1995; MALLEFET, 1999). Few stud-
ies have been performed on luminous ophiuroids and they
have been restricted to two different fields. Ethological
approaches on Ophiopsila californica have demonstrated
that light emission is used as an anti-predatory signal
(BASCH, 1988; GROBER, 1988). Physiological works per-
formed on the small brittlestar Amphipholis squamata
have shown that emitted light is intracellular and
restricted to specialized cells called photocytes (DEHEYN

et al., 1996). Moreover, this photogenesis is under com-
plex nervous control (DE BREMAEKER et al., 1996, 2000).

Recent works show that natural bioluminescence is an
efficient genetic marker in A. squamata. Several parame-

INTRODUCTION

Since the 19th century and the theory of evolution, nat-
ural scientists have been looking for individual variations
within and between populations (RIDLEY, 1997). In order
to understand the evolution of these variations, population
biologists use different categories of genetic markers:
morphological, biochemical or more recently molecular
markers (SUNNUCKS, 2000). In the past decade, the contri-
bution of molecular genetics to population biology has
been huge. Many new genetic markers appeared with the
development of the polymerase chain reaction (PCR) and
the advent of routine DNA sequencing. Examination of
these markers at the right scales of time, space and change
can give information on the distribution and evolution of
genetic variants. For example, microevolutionary
processes such as migration, natural selection or repro-
ductive success could be investigated using this method.
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ters of the bioluminescence (intensity and kinetics), as
revealed by KCl stimulation, present important intraspe-
cific variations (DEHEYN et al., 1997 ; DUPONT &
MALLEFET, 2000), which are heritable (DUPONT et al.,
2000a). Moreover, bioluminescence reveals exactly the
same variability as that observed with molecular markers
such as RAPDs (DUPONT et al., 2000b). Natural biolumi-
nescence, polymorphic and heritable, is then a good
genetic marker and presents numerous advantages over
molecular markers: it is cheaper, faster and easier to use.

The aim of this work was to test this method on other
bioluminescent ophiuroid species. We compared the lumi-
nous capabilities of individuals of six species using the
KCl stimulation method in order to demonstrate that nat-
ural bioluminescence can be used as a genetic marker.

MATERIAL AND METHODS

Six species of luminous ophiuroids were collected in
different locations (Table 1). Animals were anaesthetised
by immersion in 3.5% w/w MgCl2 in artificial sea water.
Arms were removed from the disc, measured and stimu-
lated with KCl 200mM to trigger the maximum light
emission. Measurements of light capabilities were carried
out in a dark room using a luminometer (Berthold FB 12);
three parameters were measured to characterize the light
response as described for A. squamata (MALLEFET et al.,
1992). The maximum intensity of light was expressed in
megaquanta per seconds and per millimeter of arm (Lmax
in Mq.s-1.mm-1) and two kinetic parameters were
expressed in seconds: the time elapsing between the
application of the KCl stimulus and the beginning of the
light production (Latency time, Lt), and the time between
the beginning of the light production and the maximum of
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light production (Tlmax). Data were considered as coor-
dinates using the three luminous parameters. Euclidian
distances were computed and observations were hierar-
chically clustered using Ward’s maximum-variance
method (WARD, 1963). Each mean value is expressed with
its standard error of mean (mean ± SEM); analysis of
variance (ANOVA) and t-tests were used to determine the
significance of the observed differences between the
groups. All statistical methods used are designed under
the assumption that the data are normally distributed.
Tests have been used to check that the data are a random
sample from a normal distribution. Since the sample size
was less than or equal to 2000, the SHAPIRO-WILK (1965)
statistic, W, was used. When data were not normally dis-
tributed or when heteroscedasticity occurred, a logarith-
mic transformation of data was performed as indicated by
SOKAL and ROHLF (1995). Analyses were performed using
Statistical Analysis System (SAS institute).

RESULTS

Qualitative description of light emission

In the studied species, bioluminescence is represented
by a diversity of colours, localizations and patterns. Two
different colours are observed: Amphiura filiformis is the
only species producing blue luminescence while other
species emit in the green. Bioluminescence is always
restricted to the arms except in the undescribed
Amphiodia species where a weak light is also observed in
the disc. Representative patterns of light emission of each
species are presented in Fig. 1. Luminous reaction pres-
ents rapid kinetics in nearly all the species (Table 2) : the
latency time is short (Lt<2 s) and the maximum intensity
of light is quickly reached (Tlmax< 25 s). A contrasting
kinetic is observed for O. aranea where the luminous
reaction is significantly slower (Tlmax>40 s). On average,
maximum intensity of light is significantly different
between the species (p<0.01 except between A. arcystata
– A. squamata and O. aranea - O. californica). Amphiodia
always produces intense light (30713±2564 Mq.s-1.mm-1),
followed in level of intensity by both Ophiopsila species
and A. filiformis. A. squamata and A. arcystata produce a
much weaker light, at least ten times less intense than the
other species. In addition, there is important intraspecific
variability between the three species: A. filiformis, A.
squamata and O. aranea.

Quantitative description of light emission

Inter- and intraspecific differences were formalised by
cluster analysis (Ward’s methods). As a consequence of
the huge variability within the species, A. filifomis was
analysed separately. Fig. 2 presents the tree inferred from
euclidian distances calculated on the basis of the three
luminous parameters for O. aranea, O. californica, A.
arcystata, Amphiodia n. sp. and A. squamata, where three
different colour morphs were observed on the basis of the

TABLE 1

Luminous species of ophiuroids used in this study

Sampling site

AMPHIURIDAE

Amphipholis squamata Tindari, Italy 
Delle Chiaje, 1828 (38°08’N 15°03’E)

Amphiura filiformis English Channel, Belgium
Müller, 1776 (54°N 8°E)

Fiskebäckskil, Sweden
(58°16’N 11°26’E)

Amphiura arcystata Santa Barbara, USA
Clarck, 1911 (34°25’N 119°57’W)

Amphiodia n. sp. Santa Barbara, USA
(34°24’N 119°49’W)

OPHIOCOMIDAE

Ophiopsila aranea Banyuls-sur-Mer, France
Forbes, 1843 (42°29’N 3°08’E)

Ophiopsila californica Santa Barbara, USA
Clarck, 1921 (34°25’N 119°57’W)
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TABLE 2

Luminous parameters for each species (Amfiura filiformis, A. arcystata, Amphipholis squamata, Amphiodia n. sp., Ophiopsila aranea
and O. californica), colour morphs of A. squamata and main clusters for A. filiformis (Fig.4) and O. aranea (Fig.2). Mean ± standard
error of mean; n=number of ophiuroids.

Lmax Lt Tlmax n
(Mq.s-1.mm-1) (s) (s)

Ophiopsila aranea Mean 14679.85±5848.51 2.94±1.24 51.70±4.82 18
“ Cluster 1 (Fig.2) 3826.52±1195.6 4.16±1.77 43.49±5.08 12
“ Cluster 2 (Fig.2) 36386.52±14186.21 0.48±0.11 68.12±6.50 6

Ophiopsila californica Mean 19803.89±8230.06 0.50±0.02 1.88±0.65 10

Amphiura arcystata Mean 323.10±160.33 0.78±0.10 9.89±1.19 9

Amphiura filiformis Mean 8055.39±1270.11 0.51±0.04 12.69±1.36 59
“ Cluster 1 (Fig.4) 9616.45±2678.60 0.44±0.03 4.95±0.38 12
“ Cluster 2 (Fig.4) 5923.98±4925.69 1.06±0.18 2.38±0.40 4
“ Cluster 3 (Fig.4) 26929.12±5742.82 0.35±0.06 1.16±0.20 6
“ Cluster 4 (Fig.4) 4834.97±724.56 0.35±0.03 24.36±2.20 17
“ Cluster 5 (Fig.4) 7954.76±934.70 0.20±0.00 8.81±1.48 7
“ Cluster 6 (Fig.4) 2824.78±1593.83 0.83±0.08 15.15±1.74 13

Amphipholis squamata Mean 637.43±153.47 1.18±0.09 5.84±0.43 35
“ Orange 1.17±0.18 1.62±0.15 4.04±0.29 11
“ Dark-brown 177.25±49.55 1.20±0.11 5.05±0.63 13
“ Spotted 1817.51±215.76 0.71±0.06 8.58±0.46 11

Amphiodia n. sp. Mean 30713.70±2563.66 0.67±0.05 3.52±0.41 26

Fig. 1. – Representative recordings of light emitted by an arm stimulated by KCl 200mM
(A, Ophiopsila aranea; B, O. californica; C, Amphiura arcystata; D, A. filiformis; E, Amphipholis squa-
mata; F, Amphiodia n.sp.).



pigmentation of arms and discs : Orange, Dark-brown
and Spotted (see DUPONT & MALLEFET, 2000). Ward’s
clustering method revealed six clusters separated by min-
imal distance of 0.01. Clusters 1 and 2 correspond to O.
aranea. Cluster 3 contains individuals of A. arcystata and
A. squamata of Dark-brown and Spotted morphs where
Orange one constitutes the cluster 4. These four clusters
are greatly separated from clusters 5 and 6 containing
respectively Amphiodia n. sp. and O. californica.
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graphical distribution since all the clusters (except cluster
5) are consist of individuals from the both locations.

DISCUSSION

Looking at bioluminescence, we can see that each
species possesses its own particularities : A. filiformis is
the only one to emit blue light, only Amphiodia is able to
produce light with its disc, O. aranea has a very slow
kinetic of light emission, etc. Luminescence is induced by
KCl depolarization and characterized by three parameters
(Lmax, Lt and Tlmax). Ward’s clustering method on
euclidian matrix of distance computed on these parame-
ters constitutes an excellent tool giving functional infor-
mation at inter- and intraspecific levels.

Interspecific variability

Most of the species were isolated using their biolumi-
nescence capabilities. Surprisingly, great differences were
observed compared to what was expected with classical
phylogeny (SMITH et al., 1995). For example, both species
of the genus Ophiopsila, O. aranea and O. californica, are
not closely related. O. aranea is clustered with A. arcys-
tata and A. squamata while O. californica is linked to
Amphiodia n. sp..

These paradoxical results could be due to differences in
the nervous control of the photogenesis. Previous works
have shown that calcium ions are required to trigger light
emission in ophiuroids (MALLEFET et al., 1994, 1998;
DEWAEL & MALLEFET, 2000). Nevertheless, the type of
calcium channel involved in the luminous control differs
from one species to another : L-type channels are involved
in the luminous control of O. californica whereas another
uncharacterized channel type would be implicated in O.
aranea (DEWAEL & MALLEFET, 2000).

Therefore, we can postulate that our method is useful to
reveal physiological differences between species. A com-
parative study of the nervous control of these species is in
progress in order to confirm this hypothesis.

Fig. 2. – Tree inferred from euclidian distances between biolu-
minescence parameters of Ophiopsila aranea, O. californica,
Amphiodia n. sp., Amphiura arcystata, A. filiformis and the three
colour morphs of Amphipholis squamata (Or, orange, Db, dark-
brown and Sp., spotted). Distances within a cluster are inferior
to 0.01.

Since it was impossible to isolate A. arcystata from A.
squamata, the same analysis was performed on these
species only (Fig. 3). Ward’s method then reveals four
clusters and allowed the separation of the three colour
morphs of A. squamata (clusters 1 and 2 are the individu-
als of the Dark-brown morph; cluster 3, individuals of the
Spotted morph and cluster 4, individuals of the Orange
ones). Nevertheless, we are unable to isolate A. arcystata
from Dark-brown and Spotted morphs of A. squamata
(clusters 1 to 3).

Fig. 3. – Tree inferred from euclidian distances between biolu-
minescence parameters of Amphiura filiformis and the three
colour morphs of Amphipholis squamata (Or, orange, Db, dark-
brown and Sp, spotted) and the quantity of ophiuroids of both
species in each cluster. Distances within a cluster are inferior to
0.01.

A. filiformis from two different locations (Sweden and
the English channel) were analysed with the same meth-
ods (Fig. 4). Two group of three clusters (1 to 3 and 4 to
6) are separated by an important distance. This great
intraspecific variability cannot be explained by the geo-

Fig. 4. – Tree inferred from euclidian distances between biolu-
minescence parameters of Amphiura filiformis from two differ-
ent location (Sweden and English Channel) and the quantity of
ophiuroids from each location in each cluster. Distances within
a cluster are inferior to 0.01.



Intraspecific variability

The same method, combining bioluminescence and
cluster analysis, was used to reveal variability at the
species level. Two species present important intraspecific
variability: A. filiformis and A. squamata.

In A. squamata, this variability reflects the polychro-
matism. Each colour morph is isolated according to its
luminous capabilities. This result confirms observations
in several populations around the world (DEHEYN et al.,
1997, 2000; DUPONT & MALLEFET 2000; DUPONT et al.,
2000b). Moreover, genetic variations revealed by RAPDs
demonstrate that genetic structure is homogenous within
each colour morph of a same population (DUPONT et al.,
2000b). Since there is a link between polychromatism,
bioluminescence and genetics, it was suggested that poly-
chromatism and/or bioluminescence might be good indi-
cators of genotype variability.

We propose that this idea could be extended to other
ophiuroid species. In the case of A. filiformis, the two
studied populations (English Channel and Sweden) were
not differentiated with the method employed. Moreover,
this variability could not be explained by any morpholog-
ical character such as polychromatism. Assuming that
bioluminescence is an indicator of genetic variability in A.
filiformis, we postulate that most of the genetic variation
occurs within population. Similar conclusions were
reached by MCCORMACK et al. (2000). They used RAPDs
analysis applied to individuals of A. filiformis from two
geographical locations. Analysis of molecular variance
showed that a minimum of 93% of phenotypic variance
occurred among individuals within populations.

Conclusion

We propose a new method, using natural biolumines-
cence properties and cluster analysis, to measure variabil-
ity within or between species. At the interspecific level, it
might give information about differences in the nervous
control of luminescence. At the intraspecific level, it
could be used as an easy-to-use genetic marker providing
information for population genetics of luminous ophi-
uroids.
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