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A quadratic approach to allometry yields
promising results for the study of growth
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ABSTRACT. Julian Huxley (1924) came to the conclusion that intra-specific growth usually follows a sequence 
of power curves. So Huxley claimed that during growth sudden changes in the growth rate can occur. The 
restudy of his material, however, reveals that his observations closely follow single quadratic curves. As a result 
the intra-specific allometry studied by Huxley is comparable to ontogenetic allometry. The quadratic factor 
of the quadratic equations obtained, represents the growth rate; it shows the constant increase (positive factor) 
or decrease (minus factor) of one of the measurements for a constant increase in the other measurement with 
which it is compared. The quadratic factor explains the entire growth process and is the same for the smaller 
(younger) and larger (older) specimens. It could probably permit the prediction of the shape of larger and/or 
smaller animals not yet found, or give a clue to some evolutionary changes. By using the quadratic parabola 
there is no need to postulate “sudden changes in the growth curve” and so it appears that Huxley’s power curve 
can be abandoned.
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IntroDuCtIon

Huxley’s (1924) assumption was, when he 
compared the measurements of body part y with 
body part x, that for a theoretical, small amount 
of growth, there is a constant ratio between the 
two growth rates

dy/dx = constant k (1)
This resulted in the formula of allometric growth:

y = bxk   (2)
“b” and “k” being constant factors. This expo-
nential formula can also be written as:

log y = log b + k log x  (3)
As a result the curvilinear relationship (2) is 

linearized when the data are plotted onto a log-
log scale; the slope of that line is represented by 
the power factor “k” (known as the allometric 
coefficient) and log b is the intercept of the line 
on the y-axis.

The study of growth has been, thereafter, 
greatly influenced by Huxley’s proposal, 
although doubts have also been expressed. The 
results on log-log graph paper often show not a 

single straight line, but two-three consecutive 
straight lines. These observations have been 
explained by proposing ‘sudden changes” in the 
allometric constant k. These “sudden changes” 
have cast some doubt on the allometric formula 
and several other formulas have been proposed 
(a review is found in ZeGer & Harlow, 1987). 
Recent publications on that matter are e.g. 
Stern & emlen (1999); Gayon (2000); knell 
et al. (2004); SHinGleton (2010) and Packard 
(2012).

The term allometry was introduced by Huxley 
& teiSSier (1936). It designates the changes in 
relative dimensions of parts of an organism that 
are correlated with changes in shape and overall 
size (levinton, 1988 in Gayon, 2000).

Packard (2012) restudied Huxley’s 
measurements of Uca pugnax (SmitH, 1870) 
and presented not only a two-parameter power 
function but also a three-parameter power 
function; this three-parameter model “is better 
than the two-parameter model for describing 
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the observations”. In a remark on that article, 
Geraert (2013) suggested that a quadratic 
parabolic curve is as good as or even better than 
a power function to explain the observations.

Geraert (2004), studying ontogenetic 
allometry, has shown that there is a constant 
change in the relationship (and not a constant 
relationship) between a small amount of growth 
of body part y compared to that of body part 
x; mathematically speaking, “the second 
difference” is constant. That second difference 
is the growth rate and is present in the quadratic 
factor of a quadratic equation; the other factors 
in that equation have no biological meaning but 
are necessary to position the quadratic curve in 
a diagram.

Geraert (2004) followed growth data from 
the new-born stage to the adult. Huxley (1924, 
1932) based his assumptions mainly on the 
variation found in adults, not only on the males 

of the fiddler crab, but also on the males and 
females of the shore crab (Carcinus maenas) and 
on male mandibles in three species of stag-beetles 
(Lucanidae). The very large variation observed in 
these adults was interpreted by Huxley (1924, 
1932) also as “growth”. In this study, an attempt 
is made to see if a quadratic parabola can also 
be used to describe variation in adults, called 
“comparative” growth in Geraert (2013), and 
“static” and “intra-specific” allometry in Gould 
(1966) and Gayon (2000).

results

Carcinus maenas l. (Fig. 1)

Huxley & ricHardS (1931) studied the 
increase of width of the abdomen in comparison 
with the increase of carapace length; the 
measurements were split into three categories: 
“unsexables”, females and males. Huxley 

Fig. 1. – Comparison of carapace length to abdomen breadth in Carcinus maenas. The measurements given in 
Huxley (1932) are represented on a double arithmetic scale (and not on a log-log scale); the open circles are the 
measurements for the unsexed specimens and for the adult females of the shore crab. The calculated quadratic 
parabola is added.
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(1932) gave the measurements for the unsexables 
and for the females; he used “abdomen-breadth” 
as Y and “carapace-length” as X (both in mm). 
The quadratic equation linking both is:
Y = 0.0039 X² + 0.2685 X - 0.467  (R² = 0.997)

Per 10 mm increase in carapace length the 
abdomen breadth shows a constant secondary 
increase of 0.78 mm (this is twice the quadratic 
factor). The differences between the observed 
Y-values and the calculated Y-values are small 
for whatever X-value is considered (Table 1).

∑ (Y calculated - Y observed)² = 3.7 mm²

The mean difference between Y calculated 
and Y observed is approximately 0.1 mm; this 
difference varies from zero to 0.9 mm.

Cyclommatus tarandus (Thunberg , 1806) 
(Fig. 2)

Huxley (1927, 1932) studied the increase of 
the mandibles in several species of the Lucanidae, 

the stag beetles; he used the measurements of 
DudicH (1923) for Cyclommatus tarandus. In 
this case Y = mandible length in mm and X = 
body length + mandible length also in mm. The 
quadratic equation linking both is:
Y = - 0.0011 X² + 0.71 X - 11.41  (R² = 0.997)

Per 10 mm increase in the total length X there 
is a constant secondary decrease of 0.22 mm in 
the mandible length (this is twice the quadratic 
factor); this small quadratic factor indicates that 
an almost straight line is observed (This may 
be largely due to the fact that measurement Y 
is included in X). The differences between the 
observed Y-values and the calculated Y-values 
are small for whatever X-value is considered 
(Table 1).

∑ (Y calculated - Y observed)² = 5.35 mm²

The mean difference between Y calculated 
and Y measured is approximately 0.44 mm; this 
difference varies from zero to 1.3 mm.

Fig. 2. – Comparison of total length (= body length + mandible length) to mandible length in Cyclommatus 
tarandus. The measurements given in Huxley (1932) are represented on a double arithmetic scale (and not on 
a log-log scale); the open circles are the measurements for the males of this stag beetle. The calculated quadratic 
parabola is added.
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DIsCussIon

The allometric equation (2) (3) needs two 
factors (“b” and “k”) to describe the relationship 
between the measurements X and Y. The meaning 
of each one of them has been a debate during 
many years and is summarized in Gayon (2000); 
no final conclusion is reached. The quadratic 
equation has only one factor that shows the 
constant increase (positive factor) or decrease 
(minus factor) of one of the measurements for a 
constant increase in the other measurement with 
which it is compared.

Huxley (1932) did not find the single straight 
line (3) needed to support his theory in the two 
cases restudied here (and in the fiddler crab 
restudied in Geraert, 2013). For the shore crab 
the logarithmic plotting showed a kink in the 
observations as well for females as for males, 
so a different growth coefficient was observed 
for young females (males) and older females 
(males). Huxley (1932) gave several k-values 
(added on Fig. 3) that he experimentally derived 
from his figure, moreover the constant “b” has 
not been given. Therefore it is not possible to 
compare his (several) equations with the single 
quadratic equation obtained. The straight lines 
found by Huxley (1932) in his log-log diagram 

(Fig. 3) can be interpreted as mathematical 
accidents; on the other hand in Fig. 1 one can 
suggest another three consecutive straight lines: 
these are mathematical accidents as well in this 
arithmetic diagram. 

For the stag beetles Huxley (1932) found that 
all curves inflect at large absolute sizes; for the 
smaller animals of Cyclommatus tarandus he 
gave a k-value of 1.97 and a b-value of “just over 
0.01”. (Fig. 4). So, it is not relevant to compare 
his curve restricted to the smaller animals with 
the quadratic one presented here, that includes 
all the measurements. 

 Nevertheless Huxley continued propagating 
the power curve for describing growth. His 
proposal has been generally accepted, as for 
example in recent times by Knell et al. (2004) 
for the stag beetle; SHinGleton (2010) for the 
fiddler crab. On the other hand the quadratic 
curve closely follows all the observations 
including those relating to the smallest and 
the largest animals; the single quadratic factor 
explains the entire process.

cHamPy (1924), cited by Gayon (2000), 
argued that the relative growth process was 
adequately described by a parabolic curve of 

TABLE 1

Calculated values for Carcinus maenas and Cyclommatus tarandus based on the measurements given in 
Huxley (1932). The calculated values are obtained by using the quadratic equation shown in the text; the 
Y-values are calculated by a constant increase of the X-values with 10 mm. As a result the constant second 
differences in the Y-values are obtained. X and Y are explained in the text.

              CARCINUS MAENAS           CYCLOMMATUS TARANDUS

X-value 
in mm

Y-value 
calculated

Increase 
in 

Y-values

Second 
difference

X-value 
in mm

Y-value 
calculated

Increase 
in 

Y-values

Second 
differences

10 2.606 20 2.336
3.850 6.543

20 6.456 0.78 30 8.879 -0.22
4.627 6.322

30 11.083 0.78 40 15.201 -0.22
5.403 6.102

40 16.487 0.78 50 21.303 -0.22
6.180 5.882

50 22.667 60 27.186
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the shape V = at²; this curve is a special case of 
a power curve and is different from the curve 
proposed here. teiSSier (1931), cited by Gayon 
(2000), observed that CHamPy’s law was indeed 
a good approximation for some insects. martin 
(1960), kidwell & Howard (1970) and 
walker & kowalSki (1971) using curve-fitting 
programs observed that a parabolic curve gave 
the best approximation for their measurements 
on growth; every one of these authors stressed 
that this discovery was arbitrary and had no 
biological meaning. Apparently no one thereafter 
used or mentioned the quadratic equation (ZeGer 
& Harlow, 1987).

ConClusIons

1. The quadratic equation explaining ontogenetic 
allometry (Geraert, 2004) explains (in the 
cases studied) intra-specific allometry as well.

2. Huxley’s (1924) proposal to use a power 
curve to explain intraspecific allometry seems 
no longer acceptable. By using the quadratic 
curve there is no need for such explanations 
as “sudden changes in the growth factor” or 
“the curve inflects at large absolute size”; 
there is one and only one factor that describes 
relative growth and that is the quadratic factor 
of the quadratic equation.

Fig. 3. – Figure taken from Huxley (1932) with the following explanation: “Increase of width of abdomen with 
increase of carapace length in the shore crab, Carcinus maenas: logarithmic plotting”. The signs for unsexables, 
males and females are explained on the graph; the growth coefficients given by Huxley (1932) were also added.
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Presumptions
3. The use of a quadratic equation in a case 

of intra-specific allometry could allow  
prediction of the shape of larger and/or 
smaller specimens not yet observed.

4. It can be assumed that changes in the growth 
factor(s) do now-and-then occur and have 
occurred in the past; such shifts could perhaps 
explain some evolutionary changes.
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