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An extraordinary theory of morphogenesis
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ABSTRACT. The publication of ‘The Chemical Basis of Morphogenesis’ by ALAN M. TURING in 1952 was a mile-
stone for the development of mathematical biology and for many (biological) disciplines leaning on it. TURING pro-
vided an original solution to the problem of morphogenesis, by adapting a system of coupled differential equations
to describe both chemical reaction and diffusion of morphogenetic substances in an initially homogeneous configu-
ration. FOURIER’S analysis of the ‘ring problem’ in heat conduction, and the theory of spherical harmonics and their
solution by (normalized) LEGENDRE’S associated functions form the mathematical backbone of TURING’S work on
morphogenesis. TURING was up to more than providing a mathematical description of initial stages of embryonic
development. Rather he was eager to unveil the mathematical foundations of living, biological organization. An
investigation of the archival material of unpublished letters and manuscripts indicates that TURING was clearly
determined to provide an argument for the generation of ‘order-from-disorder’. Unfortunately, during his lifetime
TURING remained unable to demonstrate the use of his model beyond the level of early embryonic stages. In the
posthumously-published manuscripts several indications are found for further adaptation and improvement of
TURING’S model to handle more accurately the reaction-diffusion processes in small organisms.

KEY WORDS :  morphogenesis, reaction-diffusion theory, early embryonic development, spherical harmonics, nor-
malized Legendre associated functions.

INTRODUCTION

In 1952 a paper was published that had a far-reaching
impact not only for the application of the theory of reac-
tion-diffusion mechanisms in biology, but also for devel-
opmental biology and embryology (TURING, 1952).
Indirectly, genetics and the entire biological field were
also affected. The author, however, was not a biologist but
a mathematician. His 1952 paper was the only biological
paper he published during his lifetime. ALAN MATHISON
TURING (born 23 June 1912) unfortunately died under dra-
matic circumstances in June 1954, only two years after the
publication of ‘The Chemical Basis of Morphogenesis’
(August 1952). 

As early as 1953, the speculative value of TURING’S pa-
per was recognised by J.W.S. PRINGLE (Department of Zo-
ology, Cambridge) (1953), stating that TURING’S model of
morphogenesis could ‘provide a means of creating struc-
ture where no structure was initially present’. A system
that is unstable with respect to its local concentrations of
reacting molecules may be started on a course towards sta-
bility by a small event. However, if there is some initial
heterogeneity due to factors other than the concentrations
themselves, PRINGLE (1953) says this can provide ‘the in-
itial stimulus for morphogenesis if the heterogeneity has a
component of its structure similar to the inherent tendency
of the system’. The notion of  an emerging self-explaining

structure as well as the notion of the tendency of an unsta-
ble, homogeneous system towards a stable but heterogene-
ous system were both present in contemporary thought on
morphogenesis. PRINGLE also refers to a personal commu-
nication of A.M. TURING with respect to the so-far unpub-
lished work involving a model with non-linear differential
equations for two morphogens.

The unpublished manuscripts and notes of ALAN
TURING’S later research on ‘The chemical theory of mor-
phogenesis’ have been collected at King’s College Ar-
chive Centre (referred to as KCC). These were studied and
pieced together by N.E. HOSKIN and B. RICHARDS and ap-
peared – together with the 1952 paper – in the Collected
Works of A.M. TURING (Volume Morphogenesis edited by
P.T. SAUNDERS, 1992). In this posthumously published
work, TURING’s model indeed diverted from the linear
case and also from geometrical constraints such as the ring
of cells or the sphere. Moreover, an important conceptual
role is reserved for the use of the mathematical theory of
spherical harmonics and Legendre associated functions. 

The extraordinary character of TURING’S work on mor-
phogenesis links up with his outstanding achievements in
fields such as mathematical logic, mechanical intelligence
and pure mathematics. As a pinnacle in the twentieth cen-
tury of mathematical and logical thought, he would rather
work things out in a self-contained way than lean on others
(see biography by SARA TURING, 1959, p. 119). As an ex-
ample, in 1934 TURING proved the Central Limit Theorem
independently of Lindeberg’s proof  of 1922 (HODGES,Corresponding author : W. Allaerts, e-mail : w.allaerts@planet.nl
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1983, p. 88). Also, TURING’S paper ‘On Computable Num-
bers’ (1937) was independently provided but nevertheless
antedated by Church’s work in this field and published in
1936 (HODGES, 1983, p. 546). TURING was familiar with
E. SCHRÖDINGER’S 1943 lecture ‘What is Life?’, deducing
the crucial idea that genetic information must be stored at
the molecular level (SCHRÖDINGER, 1944). But rather than
follow up SCHRÖDINGER’S suggestion, TURING aimed at
finding a parallel explanation of how a chemical soup of
molecules could possibly give rise to a biological pattern,
granted the transcription of genes into diffusible mole-
cules (HODGES, 1983, p. 431). 

However, TURING (1952) had some benefit of existing
biological knowledge. The notion of diffusible molecules
that affect embryological development and the discovery
of the existence of chemical gradients that directed axis
formation in the embryo, were especially elaborated by
HÖRSTADIUS (1939, 1950, 1952, 1953). HÖRSTADIUS used
eggs of the sea urchin Paracentrotus lividus (Echinoder-
mata) as a model for the study of the development of an
animal-vegetal gradient system in an initially spherical,
symmetrical organism (for a review see BALINSKY, 1981).
Moreover, since it became well known that also the cy-
toskeleton has a very important role in early embryogene-
sis, TURING’S conceptual basis of mere diffusible
morphogenetic substances nowadays is considered too
narrow to support the full range of embryological and de-
velopmental processes observed in biological species. The
notion of ‘positional information’ (WOLPERT, 1969) – al-
though more vague than TURING’S notion of morphogen
(see HARRISON, 1987) – has regained popularity as a con-
ceptual framework to embrace several biochemical mech-
anisms, acting in concert to direct morphogenesis (for a
review see ALLAERTS & ROELANTS, 1993). Although
mathematical contributions to the field of embryology
have only occasionally been  reported since the work of
TURING (see e.g. GOODWIN & TRAINOR, 1980), mathemat-
ical modeling recently regained interest in the field of ge-
nome analysis (PERCUS, 2002). 

We previously reported on the extraordinary position of
TURING’S 1952 paper on morphogenesis with respect to
the concept of positional information (ALLAERTS & ROE-
LANTS, 1993), although we did not report in detail on the
mathematical features of TURING’S work. In this study, we
will focus on the mathematical core (section 1) and the or-
igin and background of the 1952 paper (section 3). In sec-
tion 2, TURING’S modifications of the reaction-diffusion
model for small organisms are discussed, based on unpub-
lished manuscripts and notes kept at King’s College Ar-
chive Center and partly posthumously published in the
Collected Works of A.M. TURING (SAUNDERS, 1992). Sev-
eral examples have been found in the literature (biology as
well as physics) to validate TURING’S theoretical findings.
Finally, a few notes are added on TURING’S view on con-
scious living beings (section 4). An appendix is added for
introduction into the mathematical techniques used by TU-
RING to solve morphogenesis in a cylindrical (appendix a)
and spherical configuration (appendix b). Also the mathe-
matical fine-tuning of Turing’s reaction-diffusion model
as worked out by RICHARDS (see SAUNDERS, 1992), and
the use of the technique of normalized Legendre associat-
ed functions to describe skeleton formation in radiolarian
species are discussed (appendix c).

THE MATHEMATICAL CORE
OF THE 1952 PAPER

ALAN TURING was not the first to use a mathematical
model to describe complex dynamic systems in biology.
Already VOLTERRA (1926), used a system of two coupled
differential equations to describe the oscillatory behaviour
of abundance numbers of prey and predator species. Later
on, this model was referred to as the Lotka-Volterra system
(MURRAY, 1989). But, in contrast to the Lotka-Volterra
system, where an obvious relationship could be assumed
between the prey species and the predator species feeding
on it, the idea of morphogenetic substances that chemical-
ly reacted with each other, was an absolute terra incognita.
The new feature of TURING’S work arose from the simul-
taneous consideration of diffusion as a factor influencing
the concentrations in a region of space. In fact, TURING’S
mathematical model of morphogenesis through chemical,
diffusible substances shaped a new domain for mathemat-
ical modeling in biology, named reaction-diffusion theory
(see also ALLAERTS & ROELANTS, 1993). 

Unfortunately, TURING himself gave very few hints to
explain the mathematical origins of his model. The central
role of the cylindrical case in TURING’S 1952 paper, sug-
gests some affinity with the central ‘ring problem’ in FOU-
RIER’S (1822) analysis of heat transfer (see appendix a).
This was probably general knowledge to the trained math-
ematician TURING. On the other hand, TURING did refer to
the work of JEANS (1927) on ‘Electricity and Magnetism’,
concerning the application of spherical harmonic func-
tions to the problem of morphogenesis in a sphere. 

 The cylindrical case of morphogenesis

The central problem in TURING’S model of morphogen-
esis through diffusion of two (later: two or three) chemical
substances is a classical application of reaction-diffusion
theory. TURING’S approach starts from a radially symmet-
ric (cylindrical) system, such as a ring of cells or a contin-
uous ring of tissue. In the continuous, cylindrical case the
equations for diffusion of the substances X and Y are:

     } (1)

In this set of equations, the cylindrical notation for the
basic reaction-diffusion model is recognised, namely:

     (see also ALLAERTS, 1992)

with C the vector of chemical concentrations, f(C) the vec-
tor representing the chemical reactions of these chemical
substances, D the diffusion matrix and ∂ 2C/∂θ 2 the
second-order derivative along the polar angle co-ordinate
θ . TURING’S set of equations (1) is a limiting case of the
equations for reaction diffusion in a ring of cells, the ring
having radius ρ. In the continuous case of the ring the di-
ameter of the cells is incorporated into the notations used
for describing the diffusibilities µ’ and ν’, which are relat-
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ed to the cell-to-cell diffusion constants µ and ν of the sub-
stances X and Y respectively :

, 

It is important to note that TURING considers the diffu-
sion constants µ , ν , µ’ and ν’ as constants, a fact that has
important consequences for the biological process of mor-
phogenesis (ALLAERTS & ROELANTS, 1993). 

The general solution of (1) proposed by TURING, using
Fourier transformation, is of the form (see appendix a)  :

     }(2)

where ps, ps’ are the roots of the equation:

     (3)

The constants As, Bs, Cs and Ds are not independent, but
are restricted to satisfy the set of equations:

     } (4)

It is important to consider the nature of the solutions to
the equation set (2). These equations represent Fourier se-
ries in an exponential notation, describing the deviations
from the equilibrium concentrations h, k of the respective
morphogenetic substances X,Y (Fig.1.a). Depending on
the value of the roots p, p’ of the characteristic equation
(see appendix a), and on the value of the diffusion con-
stants µ and ν and reaction rates a, b, c, d, the resulting ge-
ometrical representations of these equations are stationary
or oscillatory waves. TURING (1952) is very much con-
cerned with the physical or biological importance of these
wave functions, which after a lapse of time may result in
patterns on the ring (Fig. 1.b). The wave-lengths of these
patterns depend on the circumference of the ring and the
chemical data set  (a,b,c,d,µ ,ν) (TURING, 1952, p. 51; see
also ALLAERTS & ROELANTS, 1993). In his unpublished
work, TURING himself indicated that the restriction to a
ring of cells was “altogether an unnecessary one (...) for
the conclusions for the ring of cells could be directly taken
over by any arrangement of cells” (SAUNDERS, 1992, p.
90). This remark, however, points to the main mathemati-
cal assumption of TURING’s 1952 paper, namely that the
reaction rates are linear functions of the concentrations,
which is considered “reasonably valid so long as only
small variations of concentrations are concerned” (SAUN-
DERS, 1992, p. 90). In section 2, the characteristics of a
more refined reaction-diffusion model devoted to the case
of small organisms will be discussed, starting from TUR-
ING’S posthumously published work (SAUNDERS, 1992).

The spherical case of morphogenesis

In 1954 ROBIN O. GANDY, university lecturer at Leicester
(UK) and inheritor of A.M. TURING’S articles and unpub-

lished manuscripts, expressed his concern about the preser-
vation of TURING’S work, in particular his work on the
cylindrical case of morphogenesis. This remark was found
in a letter to M.H.A. NEWMAN (KCC: A/8), a professor of
topology who played an important role as teacher and men-
tor of A. M. TURING in the pre-war period at Cambridge
(HODGES, 1983, pp. 90-93). In 1951, TURING himself had
already brought his work on spherical structures to the at-
tention of the neurophysiologist J.Z. YOUNG (KCC: K/1, nr.
78), but TURING considered this case rather ‘more difficult
and doubtful’ than the cylindrical case. Therefore, it is
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Fig. 1A. – Dimensions and parameters in TURING’S (1952) most
simple model of morphogenesis, the reaction-diffusion system in
a ring of cells (cylindrical case). [h,k] : equilibrium concentra-

tions for morphogenetic substances X,Y ; : reaction rates

at instant t ; double arrow: diffusibility; single arrow: deviation
from equilibrium concentration after a lapse of time.
Fig. 1B. – Result of reaction-diffusion in a ring of cells after a
lapse of time (according to TURING, 1952). The real parts R of the
roots determine the wavelengths of the pattern resulting
from equation (2) by the relation 

,

the expression for the other morphogen Y being related through
the relationship between the constants AS ~ CS ,... Moreover, it
can be easily shown that the roots and yield the same
terms, using the relation :

 (TURING 1952, p. 50).
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somewhat surprising that GANDY did not mention TURING’S
attempts to extend his model to spherical organisms, which
in fact was already addressed to some degree in his 1952 pa-
per. So, although in 1951 some doubt was expressed on the
spherical extension of the model, TURING introduced the
key mathematical features of this approach in 1952, as
shown below (see also appendix b). 

In the case of a hollow sphere of continuous tissue such
as a blastula, the spherical notation for describing the dif-
fusion of substances X and Y is needed. TURING uses the
operator ∇2 to indicate the superficial part of the Lapla-
cian. ∇2 is an abbreviation of the notation

 ,

where θ and φ are spherical polar co-ordinates on the sur-
face of the sphere with radius ρ .

The equations corresponding to set (1) in the cylindrical
case, may be written as:

     } (5)

To solve this set of differential equations, TURING
(1952) refers to JEANS (1927), stating that “(almost) any
function on the surface of the sphere can be expanded in
spherical surface harmonics”. This according to TURING
means that solutions of (5) are to be found which are ex-
pressions of the form: 

     (6).

Something curious happened with the introduction of
this notation. First, TURING’S (1952) reference to JEANS
(1927) was erroneously cited as ‘The Mathematical theory
of elasticity and magnetism’, whereas JEANS’ textbook,
edited from 1908 onwards, was on ‘electricity and mag-
netism’. Herein, indeed a chapter on methods for the solu-
tion of spherical problems was included, in which the
theory on spherical harmonics takes a very prominent
place. This theory attempts to provide a general solution of
Laplace's equation ∇ 2 V = 0 (see Appendix b)*. 

Then, Legendre’s associated functions expressed as
, are introduced by TURING (1952) without

much ado as a solution to Laplace’s equation. The upper
indices m indicate that here the associated Legendre func-
tions are used, which are linked to the Legendre functions
Pn (cos θ) through the relation:

(HOBSON, 1931, p. 90).
In appendix b, a more elaborate explanation is given of

TURING’S use of Legendre’s associated functions in the

1952 paper. The fact that TURING here also uses Legen-
dre’s associated functions of degree m = -1, but without re-
ferring to the notation for the normalized
Legendre associated functions (see appendix c), is in fa-
vour of the view that TURING was still in a process of re-
finement of his mathematical techniques (see extension of
TURING’S work by RICHARDS in SAUNDERS, 1992). 

TURING emphasizes that the expression in the square
bracket of (6) is a ‘surface harmonic of degree n’, and that
“its nearest analogue in the ring theory is a Fourier com-
ponent” (TURING, 1952, p. 70). Moreover, an essential
property of a spherical harmonic of degree n is when the
operator ∇2 is applied to it the effect is the same as multi-
plication by - (n+1)/ρ 2. Preferentially, manageably low
values of the degree n (such as 1 or 2) are chosen (see ap-
pendix b). 

The analogy with the ring theory, in which Fourier ex-
pansions are an important method (see appendix a), brings
TURING (1952) to the following solution of (5):

     } (7)

where qn and q’n are the two roots of:

and,

indicating that also here , , and are arbi-
trary but not independent constants, resulting from the so-
lution of the differential equation set (see appendix a for
analogy). 

As in the cylindrical case, TURING suggests that one par-
ticular form of wave (and wavelength) predominates, so
reducing (7) into:

     } (8)

This brings TURING to the extraordinary conclusion that
the two morphogens diffusing on the sphere have propor-
tional concentrations, and both of them are described by
surface harmonics of the same degree n0 . This degree n0
is chosen to maximize the greater of the roots qn , q’n
(TURING, 1952, p. 70). 

In Fig. 2, some examples are shown of applications
found in biology and chemistry, that validate the use of
spherical harmonics in processes describing early embry-
ogenesis (GOODWIN & TRAINOR, 1980) or that provide ev-
idence for sustained non-equilibrium chemical patterns,
called ‘Turing structures’ later on (CASTETS et al., 1990).

* This theory was to a large extent worked out by the French mathemati-
cian A.M. LEGENDRE (1752-1833), contemporary of Sir P.S. DE
LAPLACE (1749-1827) (for an historical review see E.W. HOBSON, 1931,
pp. 16-17). 
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TURING himself suggested that the forms of ‘various, near-
ly spherical structures’, such as radiolarian skeletons (Fig.
2.c), were closely related to spherical harmonic patterns,
an idea that has been elaborated further by B. RICHARDS
(see SAUNDERS, 1992; appendix c). The best application of
his theory, however, according to TURING (1952), seemed
to be the gastrulation of the blastula. TURING referred to
the early stage in the development of an embryo, charac-
terized as a hollow spherical aggregation of cells which

still are morphologically identical. As long as the size of
the blastula is not more than the dimensionless diffusibili-
ty (µ’), the system is considered ‘quite stable’. Near this
point, however, TURING thinks the harmonics of degree 1
begin to develop, bringing the Legendre’s associated func-
tions ( ) into play (TURING, 1952, p. 71; see appendix
b). At his untimely death however, this idea remained un-
explored.

REFINEMENT OF THE MODEL
FOR SMALL ORGANISMS

 According to N.E. HOSKIN & B. RICHARDS (in SARA
TURING, 1959, p. 137-144), at least two major modifica-
tions were adopted by TURING in his late, unpublished
work on morphogenesis. These are: (1) the incorporation
of  quadratic terms in the differential equations in order to
take account of a ‘larger departure from a state of homoge-
neous equilibrium’; (2) the consideration that for small or-
ganisms the concentration function of the so-called
growth-retarder or ‘poison’ substance (symbol Vj), were
independent of position. The latter assumption requires
that the organism is so small that the growth-retarder is
uniformly diffused through it. 

Today, it is a well-known fact that at least in the animal
species studied so far, concentrations of morphogenetic
substances with stimulatory effects and substances with
inhibitory (or ‘growth’-retarding) capacities do exist, and
both occur in gradient-like or discrete distribution pat-
terns. But this molecular biological knowledge obviously
was not available in the early fifties, when TURING pub-
lished his linear model for morphogenesis (1952) and the
double helix strand model for DNA (WATSON & CRICK,
1953) was just discovered. For comparison, the home-
obox-gene concept (and the idea of genes that regulate the
patterned expression of morphogens) was proposed only
in 1984 (see ALLAERTS, 1998 for references).The linear
differential equations used in the 1952 paper were of the

form  with (i = 1,...,n) for n

different morphogens (9)and fi  the reaction function giv-
ing the rate of growth of Xi and µ∇ 2 Xi the rate of diffusion
of Xi (compare with equation 1 in section 1). In his 1952
paper, Turing considered the Xi’s as variations from a ho-
mogeneous equilibrium, and, if the departures from equi-
librium were only small, it would be permissible to
linearize the fi‘s and thus the differential equations. These
conditions were assumed to be fulfilled in the ‘initial’ state
of the morphogenetic system, where a homogeneous equi-
librium state was present. Embryological studies after-
wards have shown that the fertilized egg, although
seemingly homogeneous at the macroscopic or even mi-
croscopic level, nevertheless has to be considered as a very
dynamic and (in biochemical terms) far from equilibrium
system. 

In order to account for a larger departure from the ini-
tial, presumed homogeneous state, Turing introduced
quadratic terms  in the reaction functions. In the second
part of the posthumously published manuscript ‘Chemical
Theory of Morphogenesis’  (SAUNDERS, 1992, pp. 88-
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ical pattern formation:
A. – Spiral nodal lines derived from spherical harmonic functions
have been used by GOODWIN & TRAINOR (1980) to describe the
cleavage process in embryogenesis. Spiral nodal lines on the
sphere from the side (left) and cleavage patterns up to third cleav-
age defined by spiral nodal lines seen from the animal pole (right)
(after GOODWIN & TRAINOR, 1980, p. 766). Arrows show the
movement of the blastomeres after cleavage.
B. – Evidence of sustained standing nonequilibrium chemical pat-
tern in a single-phase open reactor suggested to be the first unam-
biguous evidence of a Turing structure (drawn after CASTETS et al.,
1990). The reactor is made of a chemically inert polyacrylamide
gel, chemicals diffuse from the edges into the gel where the actual
reactions take place.
C. – One of the examples, suggested by TURING (1952), of the
spherical case of morphogenesis was the formation of the radiolar-
ian skeleton (siliceous skeleton of Trypanosphaera regina after
BARNES, 1974, p. 30). RICHARDS (see SAUNDERS, 1992) complet-
ed the mathematical solutions for the spherical case, making use of
the normalized Legendre associated functions (see appendix c).
The geometrical representations of these mathematical results re-
vealed spheroid bodies with increasing numbers of fine radiant
spines, when spherical harmonics of increasing degrees were in-
troduced in the mathematical solution.
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118), TURING gives the following general differential
equation for the morphogen concentration function U (t) :

     (10)

(SAUNDERS, 1992, p. 98),
where φ (-∇ 2) denotes a function of the Laplacian of Uj ,
which has its maximum near the maximum wavelength, and
Vj is the concentration function of the ‘poison’ substance.
For small organisms, TURING considers two types of wave-
lengths of importance, namely the ‘optimum’ wavelength
and the wavelength with zero root, i.e. the uniform distribu-
tion. According to TURING, the latter condition may be ful-
filled in small and ‘connected’ organisms, where it is called
a poison or growth-retarder (SAUNDERS, 1992, p. 98). G and
H denote constants that are related to the use of spherical
harmonics as solutions (see appendix b), and will appear to
be solvable using the normalized Legendre associated func-
tions and some reiteration procedure developed by RICH-
ARDS (see SAUNDERS, 1992, p. 109; appendix c).

Now, since only solutions with the optimum wave-
lengths have a significant contribution, and due to the ef-
fective equilibrium of the growth-retarders, also

, the following reduction of equation (10) is ob-
tained for small organisms:

     (11)

(SAUNDERS, 1992, p. 98),
A special linear operator ℑ (U2) is introduced with the

property to remove from a function on a sphere all spheri-
cal harmonics except those of a particular degree (exhibit-
ing a particular wavelength). Moreover, solutions must be
equivalent under rotation of the sphere, and therefore also
the squared harmonics are selected based on a specific de-
gree (HOSKIN & RICHARDS, in S. TURING, 1959). HOSKIN
& RICHARDS remarked that in most of TURING’S unpub-
lished manuscripts it was very difficult to discover the re-
sults as far as worked out by TURING himself. A number of
numerical computations were carried out on one of the
first electronic computers at Manchester University (S.
TURING, 1959, p. 139). Important in this respect is TUR-
ING’S use of spherical harmonics (already introduced in
the 1952 paper, see section 1,b) and his use of linear oper-
ators applied to these spherical harmonics. Nevertheless,
HOSKIN and especially RICHARDS provided a prolific ex-
tension of TURING’S suggestions and first steps into a more
general theory of morphogenesis. Moreover, RICHARDS
was able to demonstrate some numerical examples giving
rise to organisms resembling the morphology of a radiolar-
ian skeleton, as suggested by TURING (1952) (appendix c). 

REMARKS ON THE ORIGIN OF
‘THE CHEMICAL BASIS OF MORPHOGENESIS’

Among pre-war British mathematicians, two branches
could be discerned. On the one hand, there were those such as
G.H. HARDY, one of TURING’S teachers, who considered real
mathematics (in contrast to trivial, applied mathematics) as
not useful and doing ‘no good’ to society (HARDY, 1940). On
the other hand, there were men such as A.M. TURING, who as-
sured his followers that mathematics applied to biology and

digital computing were as esthetic and indulging as pure
mathematics could be. Owing to ANDREW HODGES’ biogra-
phy (1983) it is well accepted nowadays that ALAN TURING
was a genius of his own kind. His first biographer, Alan’s
mother SARA TURING, already quoted the words of ROBIN O.
GANDY, “that the mark of his genius was that even in the most
abstract realms of thought he always bore in mind completely
concrete ideas and examples” (S. TURING, 1959). On another
occasion, GANDY wrote that TURING was “unmethodical, or
his methods were so individual”, that his work was hard to
follow (KCC: A/18). GANDY was a PhD student and friend of
TURING, and soon became university lecturer at Leicester
(UK). Reading the collected typescripts and manuscripts at
King’s College Archive Centre, one is in no doubt about the
creative forces of TURING’s personality, as he was endowed
equally with sound mathematical discernment and a most
subtle sense of humour. The question is, however, why and
how the post-war mathematician switched over to the study
of a typically biological subject such as the problem of mor-
phogenesis of animals and plants?

ALAN TURING indeed was very concerned with the prob-
lem of finding a chemico-mechanical process that would
explain the origin of changing symmetry patterns in a devel-
oping embryo. Referring to the collected letters of Alan to
his mother (KCC, AMT/K-1), HODGES pointed out that Tu-
ring was familiar with E.T. BREWSTER’S book ‘Natural
Wonders every Child should know’ from his childhood on
(HODGES, 1983, p. 11). In BREWSTER’S book an illustration
was given of the process of blastula formation and gastrula-
tion in the early embryo. The fundamental question exem-
plified in the phenomenon of gastrulation was: if the
fertilized eggs were symmetrical and the chemical equa-
tions describing the molecular reactions in these structures
were symmetrical, without knowledge of right or left, down
or up, where did the decision to adopt a different symmetry
came from? This phenomenon inspired MICHAEL POLANYI
(1958) to claim that some ‘immaterial’ force must be at
work. For TURING it meant that in some way information
was created at this point of development (HODGES, 1983, p.
431). POLANYI, a chemist who became a Christian philoso-
pher at Manchester, was an intellectual opponent of TURING
– although on friendly personal terms (HODGES, 1997). TU-
RING told GANDY that his new ideas were intended to ‘de-
feat the argument from design’. From the onset, TURING’S
approach to the problem of morphogenesis was closely tied
with the problem of defining the driving force in embryonic
axis formation (see also ALLAERTS & ROELANTS, 1993).

On the other hand, SCHRÖDINGER’S view (1944) of a
molecular basis for genetic information was definitely in-
sufficient  to explain the formation of pattern. SCHRÖ-
DINGER put forward his viewpoint of a genuine ‘order-
from-order’ principle (SCHRÖDINGER, 1944, p. 81) far
ahead of WATSON and CRICK’S double stranded helix
model for the DNA molecule (WATSON & CRICK, 1953).
Despite, and to some extent because of considerations of
statistical physics (genes are too big to follow the expected
inaccuracy of physical laws, expressed by the  rule)1,

[ ] jjjj
j VHUGUU

dt
dU

−−∇= 22 )(φ

0=∂∂ tV j

[ ] jj
j UGUHVP

dt
dU 2).( ℑ+−=

1 The  rule is an expression of the degree of inaccuracy to be
expected in any physical law (SCHRÖDINGER, 1944). If n are the number
of molecules in a given compartment, the relative error according to this
rule will be 10 % if n = 100, but only 0.1 % if n = one million.

n

nn



An extraordinary theory of Morphogenesis 9

SCHRÖDINGER concluded that the molecular basis of the
biological hereditary mechanism was not in contrast with
statistical physics, and that quantum indeterminacy played
no relevant biological role, except perhaps by “enhancing
their purely accidental character in such events as meio-
sis, natural and X-ray induced mutations” (SCHRÖ-
DINGER, 1944, p. 83).

Determined to provide an argument for the generation
of ‘order-from-disorder’, TURING did not await the publi-
cation of WATSON and CRICK’S model either. Rather than
following up SCHRÖDINGER’S suggestion, TURING sought
an explanation of how a chemical soup of molecules in an
embryo could possibly give rise to a biological pattern. In
fact, TURING considered the effects of genes to belong to
the class of effects that are not normally distributed, but
that show a Poisson distribution instead (SAUNDERS, 1992,
pp. 100-101): “In some applications of the theory, it may
be important to consider seriously the possibility that
there may be only one or two molecules present, or even
none...” The statistical nature of diffusion and chemical
reactions (the reactants being small, manageable mole-
cules, not genes) was considered more satisfactory than
the variations of reactions from cell to cell or irregularities
of cell pattern (SAUNDERS, 1992, pp. 101-102).

In 1931 the foundations of mathematics were questioned
by KURT GÖDEL’S argument showing that arithmetic must
be incomplete and that assertions existed that could neither
be proved nor disproved (see HODGES, 1983). The discov-
ery of GÖDEL swept away two of the three demands of
DAVID HILBERT’S proposed finite scheme of formal (math-
ematical) systems, namely the terms of consistency and
completeness (HODGES, 1983, p. 92). GÖDEL’S work, how-
ever, “left outstanding Hilbert’s third question of decidabil-
ity, the Entscheidungsproblem, namely the question of
whether there exists a definite method which, at least in
principle, can be applied to a given proposition to decide
whether that proposition is provable” (HODGES, 1997, p. 8).
This question had survived GÖDEL’S analysis because “its
settlement required a precise and convincing definition of
method” (HODGES,1997). When TURING studied at Prince-
ton, he was clearly disappointed at not being able to contact
GÖDEL (who had left Princeton earlier)2. It was here that
TURING’S contribution to pure mathematics came into play
(TURING, 1936, 1937), but also that he began his conceptual
contribution to the development of the computer (HODGES,
1983, 1997). Moreover, his endeavour branched off to ex-
tend the ‘computable’ to the realm of  biological organisms.

With respect to the biological problems that became his
new interests in the post-war period, TURING probably de-
cided already in 1941 that the uncomputable, the unprov-
able and the undecidable were irrelevant to the problem of
the mind (HODGES, 1997). Unfortunately, TURING re-
mained unable to demonstrate the use of chemico-me-
chanical models beyond the level of early embryonic
stages (in his 1952 paper) in order to describe the ongoing
development up to a conscious (human) being, or to an ap-
plication into the biology of cancer (S. TURING, 1959, p.
106). His published work on morphogenesis through a
model described by coupled linear differential equations -

for a system that was considered linear only when close to
the origin - obviously was but a starting point for further
investigation. 

THE REALM
OF CONSCIOUS LIVING BEINGS

In TURINGs correspondence with the neurophysiologist
JOHN Z. YOUNG, he admits in a letter dated 8th February
1951 (KCC: K/1, Nr. 78), to be “very far from the stage
where I feel inclined to start asking anatomical questions”
(concerning the human brain). This would not occur, TUR-
ING said, until he had “a fairly definite theory about how
things were done”. However, the organization of the brain
seemed to be far more complicated than “the polygonally
symmetrical features of a starfish, flowers and leaf ar-
rangements, or than the colour patterns on animals”, al-
though “the formation of the brain structure should be one
that could be achieved by the genetical embryological
mechanism” (TURING, KCC: K/1, Nr. 78). TURING is very
confident that his work on reaction-diffusion theory will
make clear “what restrictions are really implicated” (to
the development of brain structure), and announces that he
is interested in J.Z. YOUNG’S remarks on the stimulation
under certain circumstances of neuron growth. 

On another occasion, when comparing the activities of
the human mind and the analytical properties of digital
computers, TURING adopts a different stand on the phe-
nomenon of human intelligence (TURING, 1950). Rather
than examining the semantics of terms such as ‘thinking’
and ‘machine’, TURING argues that digital computatory al-
gorithms and human intelligent activities can be complete-
ly matched or can be considered as perfect imitations of
each other. That TURING considers the anatomical organi-
zation of the brain as of different order than the thinking
performed by it, is indicated by the following premise of
TURING’S approach: namely, putting forward the imitable
properties of both systems “has the advantage of drawing
a fairly sharp line between the physical and intellectual
capacities of a man” (TURING, 1950, p. 434). Also “there
was little point in trying to make a ‘thinking machine’
more human by dressing it up in such artificial flesh (like
a material which is indistinguishable from the human
skin)” (TURING, 1950, p. 434). According to Turing the
realm of conscious human activities - being in no way per-
formed by ‘discrete state machines’-, cannot be appre-
hended without considering the ‘educational aspect of
learning’. For in contrast to the ‘slow process of natural se-
lection’, the process of learning is much better to speed up
the conditioning or teaching of intelligent human behav-
iour (TURING, 1950, p. 456). It is therefore not surprising
that TURING showed hardly any interest in the anatomical
characteristics of the brain (as he admits in the correspond-
ence with J.Z. YOUNG), and nor did many of his followers
in artificial intelligence and neural network theory. 

Recently, attempts to describe the organization of the
nervous system using an integration of neuro-anatomical
and topological approaches were found in literature
(Young et al., 1995; see also ALLAERTS, 1999). The inte-
gration of neuro-anatomical and topological approaches is
well documented in the primate visual cortex, as shown by
M.P. YOUNG and co-workers (YOUNG et al., 1995). Using

2 Later on, TURING provided a remarkable extension of GÖDEL’S theo-
rem (see GANDY & YATES, 2001).
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a topological approach, YOUNG succeeded in defining se-
veral topological characteristics of the visual system in the
primate brain cortex, that correlated with known neuro-an-
atomical features. In other model systems of visual centers
of the vertebrate brain, especially in the cat and the chick-
en, the role of learning and the biochemical processes un-
derlying the adaptive capacities for learning of the visual
system have been considerably well documented (see also
ALLAERTS, 1999).

Contrary to the rather complicated visual system of the
vertebrate brain – which indeed has served as a model sys-
tem of the nervous system as a whole – , probably the best
example in the nervous system for applying TURING’S re-
action-diffusion theory is to be found in the regulation of
axon growth. In agreement with TURING’S taste for man-
ageably low numbers of key parameters in the model, the
balance between neuron outgrowth stimulating and neu-
ron outgrowth inhibiting factors in the regulation of axonal
reconnection after spinal cord injury would be a suitable
application field for TURING’S theory. In 1951, this was
only a speculative idea, although TURING mentioned his
interest on this point in his correspondence with J.Z.
YOUNG (KCC: K/1, nr. 78).

CONCLUSIONS

The conclusion that TURING (1952) has worked out an
extraordinary theory of morphogenesis is based on the fol-
lowing main arguments: (1) TURING worked out a com-
plete mathematical model based on reaction-diffusion
mechanisms in a very personal and self-contained way, no
other template for such a model being available at his time;
(2) the molecular, biological, and biochemical knowledge
available to him was so scarce that his contribution to the
conceptualization of the biological problem of morpho-
genesis  and his pioneering role towards the development
of theoretical biology can hardly be over-emphasized.

As pointed out by authors such as STEWART & GOLU-
BITSKY (1992) however, TURING’S model was in many
ways imperfect and biologically inadequate. This was al-
ready recognised by TURING himself, who worked on a
new theory with even greater mathematical complexity
and incorporated several improvements on the original
model. Unfortunately, this work was not finished at his
death in 1954. We previously discussed a number of inter-
pretations of TURING’S 1952 paper, such as the study of
HARRISON (1987) (ALLAERTS & ROELANTS, 1993). Al-
though HARRISON (1987) remarks that in TURING’S theory
morphogens should be considered as diffusable cells (e.g.
mesenchyme cells) rather than as chemical molecules, it
can be doubted whether TURING would have agreed with
this interpretation. Indeed, in his unpublished material he
gave an even more restrictive meaning to the word morph-
ogen, “viz. chemical substance, the variation of whose
concentration is described by a variable in the mathemat-
ical theory” (KCC: AMT/C/26/5). One may regret the fact
that, so far, TURING’S theory was at best exemplified in the
formation of radiolarian skeletons, and not for instance in
the gastrulation of the blastula, an event that better reflects
the common sense of chemical processes influencing em-
bryonic development. TURING must have been aware of
this difference when stating that “gastrulation was the

most important application of his theory” (TURING, 1952,
p. 71), also because in this process the result of morpho-
genesis was a breakdown of the spherical symmetry to a
lower degree (ALLAERTS & ROELANTS, 1993; ALLAERTS,
1999).

The importance of TURING’S mathematical theory of
morphogenesis may very well extend beyond the latter
questions related to embryonic development (such as the
problem of symmetry breakdown), and provide genuine
mathematical tools for remote biological questions. TUR-
ING’S 1952 paper was entitled a ‘chemical basis for mor-
phogenesis’, whereas in the collected notes and
manuscripts the title ‘chemical theory of morphogenesis’
occurs (SAUNDERS, 1992). Although it can be doubted
whether this title was chosen by TURING – the title on the
manuscript shows a different handwriting, probably that of
R.O. GANDY –, it is obvious that TURING in his last years
mostly confined his morphogenetic studies to the domain
of growth in plants, and especially the problem of phyllo-
taxis. However, in the same notes applications of morpho-
genetic theory in other domains, such as an application of
this theory to the pathogenesis of cancer or to the spread of
epidemics, are mentioned as well (SAUNDERS, 1992, p.
100). Anno 2002, it is needless to say that new mathemat-
ical approaches in these areas might be very valuable.
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APPENDIX

a) Use of Fourier’s method for the cylindrical case of mor-
phogenesis

An important mathematical technique used by TURING is the
expansion of a function of angle θ  into a Fourier series. In both
the 1952 paper and in the collected unpublished works (SAUN-
DERS, 1992), TURING often uses a combination of a Fourier series
(in one variable) and a Fourier integral (in the other variable)
(SAUNDERS, 1992, p. 74).

TURING is rarely explicit regarding the biographical sources of
his mathematical methods. In the case of Fourier’s method, this
is probably common mathematical knowledge. For most biolog-
ical readers, however, this may not be easy to grasp, so some ex-
planation of the techniques used by TURING (1952) is given
below. 

The problem of conduction or diffusion in a ring, in which the
dependent variable depends only on one co-ordinate and the time
t, is a classical example of FOURIER’S ‘ring problem’. According
to CARSLAW & JAEGER (1959), it was the first problem to which
FOURIER applied his mathematical theory on series of periodical
functions, and for which the results of his mathematical investi-
gations were compared with the facts of experiment (FOURIER,
1822).

The expansion of a function X of angle θ  into a Fourier series
is of the form:
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     (1)

X(θ ) being values of X at t = 0
provided that the first derivative of X is continuous. To denote its

angular nature, θ  is also commonly expressed in the form .

In the case of true periodical functions it is more convenient to
expand to the goniometrical functions sin and cos because of the
real periods, than to expand to exponential functions.

Using the Taylor expansions of the complex exponential func-
tion and the goniometrical functions, the following important re-
lation directly follows:

     (2)

Consequently, taking the real parts of the Fourier expansion, a
Fourier series is obtained of the form:

     (3)

Substituting the co-ordinates x r , y r (denoting a small but lin-
ear deviation of the equilibrium concentrations for X = h and Y =
k in the r-th cell) by the new co-ordinates   ξ 0, ... ξ r, ... ξ N-1 and
η 0, ... η r, ... η N-1 , according to

     (4)

and using the relation derived from equation (2) between the
complex exponential functions:

     (5)

TURING (1952) obtains the following set of linear differential
equations in ξ s, η s with constant co-efficients :

     (6)

In simplified notation this set is of the form:

     (6*)

It is important to note that the co-efficients a11,..a22 are con-
stants, depending on the diffusibilities µ, ν and chemical reaction
rates (see section 1.a. of main text), so diffusion constants are con-
sidered constant throughout the morphogenetic system (ALLAERTS
& ROELANTS, 1993). The solutions of set (6*) are of the form x1 =
α1. e kt , x2 = α2. e kt , where α1, α2 and k are chosen so that the
exponential functions fulfill the set of linear equations:

 (PISKOUNOV, 1980, p. 121)

The latter set has to be resolved with respect to α1, α2, yielding:

If k is chosen so that the determinant of the set of equations is
different from zero, the only solution is the trivial solution where

α1= α2 = 0. However, if the determinant ∆ (k) is zero, non trivial
solutions are obtained from solving the so-called ‘characteristic
equation’ of the system (see PISKOUNOV, 1980, p. 122):

or   (a11 - k)(a22 - k ) - a12 a21= 0     (7).

The characteristic equation given by TURING (1952, p. 48) for
the set of linear differential equations (6) is as follows:

    (8)

of which ps and p’s are called the roots of the characteristic equa-
tion in p. In the case that ps and p’s are two distinct roots (either
real or complex), the solution of set (6) is of the form:

     (9)

where TURING (1952, p. 48) states that As,, Bs,, Cs and Ds are ar-
bitrary but not independent co-efficients, which are restricted to
satisfy :

     (10)

This follows the matrix notation for multiplication of the ma-
trix of set (6) with the column-matrix of the solutions of the char-
acteristic equation (8). The interdependence of As,, Bs,, Cs and Ds
therefore directly follows the mathematical procedure for solving
the set of linear differential equations (see also PISKOUNOV,
1980, Vol. 2, pp. 593-598). This mathematical result is interpret-
ed by TURING (1952) in such a way that also important biological
conclusions regarding the diffusion of morphogens are inferred
from it (see main text, section 1). 

By substituting (9) back into (4) and replacing the variables xr,
yr (departures from equilibrium) by Xr , Yr (the actual concentra-
tions), the expression similar to (2) in section 1 (main text) is ob-
tained for reaction and diffusion in a ring of cells. For the
continuous ring of tissue, the limiting case is considered where
the Fourier series is summed from - ∞ to + ∞.

b) Use of Legendre’s Associated Functions and spherical har-
monics

In the appendix to Part II, entitled ‘Chemical Theory of Mor-
phogenesis’ (based on TURING’S drafts used by N. HOSKIN and
B. RICHARDS for the ‘Morphogen Theory of Phyllotaxis’, SAUN-
DERS, ibidem, p. 117), the use of normalised Legendre associated
functions is introduced (see also appendix c). In the latter manu-
script, which was actually worked out (on a suggestion by TUR-
ING) by RICHARDS, one of TURING’S students, reference is given
to the work of E.W. HOBSON (1931). This is a textbook on spher-
ical and ellipsoidal harmonics, written for trained mathemati-
cians. The Legendre’s associated functions also occur in
TURING’S (1952) paragraph 12, devoted to ‘Chemical waves on
spheres. Gastrulation’, where they appear as solutions to the har-
monic functions on the sphere. We here present some important
features of the theory of spherical harmonics and LA-functions,
in order to elucidate the biological inferences, that, according to
TURING (1952) can be obtained from these mathematical tech-
niques. For the mathematical deductions, a detailed survey is giv-
en in HOBSON (1931). 
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Starting from Laplace’s equation in polar co-ordinates  r, θ , φ :

    (11),

and substituting V = R Θ Φ , where R, Θ,Φ, are functions of r, θ,
φ, respectively, it can be shown that some terms of Laplace’s
equation can be separated in only one variable. This implies that
the equation can only be satisfied if these are constant terms, re-
sulting in the general form of the solution for Φ = C cos mφ + D
sin mθ . Again, substituting cos θ = µ  and Θ = u , equation (11)
is transformed into: 

     (12),

where n is derived from the solution of the first term of Laplace’s
equation :

 .
In the particular case where m = 0 , equation (12) becomes:

     (13),

which is known as Legendre’s equation (HOBSON, 1931, pp. 9-
10). The complete solution of Legendre’s equation (13), where n
denotes a positive integer, is of the form:

     (14),

where Pn (µ) is called Legendre’s polynomial or function of the
n-th degree, Qn (µ) is the Legendre’s function of the second kind
and n-th degree (which has both real and complex values), and A
and B denote arbitrary constants (HOBSON, ibidem, p. 13). As ex-
plained below, the most important term is Pn (µ), which is an al-
gebraic function of µ = cos θ  of degree n , and is given by:

     (15)

The first values of the polynomial Pn (µ) are as follows:
P0 (µ) = 1, P1 (µ) = µ , P2 (µ) = ½ (3µ 2 – 1),
P3 (µ) = ½ (5µ 3 – 3µ), and so on, and :

Pn (0) = 0 for all n.
RODRIGUEZ (see HOBSON, 1931, p. 18) gave a more conven-

ient expression for the calculation of Legendre’s function in
terms of (µ 2 – 1) , namely:

     (16)

Moreover, making use of Laplace’s definite integral expres-
sion for Pn (µ) (HOBSON, p. 25):

     (17)

the following recursion formula is obtained between three con-
secutive Legendre’s functions:

     (18).

For a proper understanding of TURING’S use of the above
equations, the question of the geometrical relevance of these al-
gebraic relations is not without importance. It can be shown that
the expression Pn (cos θ) = 0   defines a system of nodal lines (see
also Fig. 2A) on the sphere, perpendicular to the axis and sym-
metrical to the diametral plane θ = π/2 (HOBSON, 1931, p. 19).

Therefore, Pn (µ) is called a ‘zonal’ harmonic, dividing the
spherical surface into zones3.

The above properties of Legendre’s polynomial Pn (µ) require
some introduction into the theory of spherical harmonics. This
theory dates back to the work of W. THOMSON (LORD KELVIN) in
England and A. CLEBSCH in Germany (HOBSON, 1931, p. 119).
According to JEANS (1927, p. 208), any solution of Laplace’s
equation (11) is called a spherical harmonic. The most important
class of harmonics consists of rational integral functions of three
independent variables, e.g. the polar co-ordinates r, θ , φ . For the
physical interpretation of these harmonics, it is important to note
that the value of any finite single-valued function of position on
a spherical surface can be expressed as a series of rational inte-
gral harmonics, each of the form rn Pn, provided the function has
only a finite number of discontinuities and of maxima and mini-
ma on the surface (JEANS, 1927, p. 211). This rule is probably the
one referred to by TURING (1952, p. 70), when stating that “any
function on the sphere, or at least any that is likely to arise in a
physical problem, can be expanded in spherical surface harmon-
ics”. JEANS (1927) wrote his textbook for students in physics and
engineering, interested in the application of advanced mathemat-
ical techniques to electricity and magnetism.

So far, only the Legendre’s functions of the first kind Pn (µ)
are considered. This is due to the fact that, if n = integer, one of
the two Legendre polynomials in equation (14) is finite, the other
is infinite. When dealing with complete spheres, it is impossible
for the Legendre’s function of the second kind Qn (µ) to become
finite. However, in cases where the infinities of the Qn harmonic
can be excluded, for instance by excluding certain parts of the
sphere, it may be necessary to take both Pn and Qn into account
(JEANS, 1927, p. 237). 

Another simplification so far was that only the solutions of
Laplace’s equation (12) have been considered where m = 0 , giv-
ing rise to Legendre’s equation (13). When considering the gen-
eral solution of the form Φ = C cos mφ + D sin mφ , with m =
integer, then so-called ‘tesseral’ harmonics constitute the solu-
tion to Laplace’s equation. These tesseral harmonics are ex-
pressed in terms of so-called Legendre’s associated functions
(shortly: LA-functions), with symbols , . The gen-
eral solution of equation (14) now becomes:

with      (19),

in which RODRIGUEZ’ expression (16) for Legendre’s functions
in terms of (µ2 – 1) is recognized. An alternative, shorter notation
is given by:

     (20) (JEANS, 1927, p. 239).

Equation (19) vanishes if m + n > 2n, i.e. if m > n, so also here
important simplifications can be obtained. Moreover, since

cannot be a rational integral function of sin θ  and cos θ
it is concluded that from the solution of Laplace’s equation only
the part with gives rise to rational integral harmonics
(JEANS, 1927, p. 239). Therefore, the solution of Laplace’s equa-
tion is of the form:

     (21)
which is the equivalent - TURING uses exponential rather than go-
niometrical terms (see appendix a) - of the expression found in
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HOBSON, 1931, p. 132).
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TURING’S solution for morphogenesis in the spherical case (TUR-
ING, 1950, p. 70). According to JEANS (1927, p. 239), there are
(2n+1) tesseral harmonics of degree n, namely:

 , cos φ , sin φ , ...,

cos nφ , sin nφ . 

For manageably low values of n, these are also the examples
of LA-functions used by TURING (1952, p. 71)**. For instance,
for n = 1 only three tesseral harmonics are possible: 
cos θ = µ (since is always a solution), sin θ  cos φ  and
sin θ  sin φ      (JEANS, 1927, p. 239 ).

For higher values of n, LA-functions can be calculated making
use of expression (20) and the recursion formula for Legendre
polynomials (18).

Concluding of this second part of the appendix, it is clear that
TURING (1952) gave very little introduction to the mathematical
methods used for solving the spherical case of reaction-diffusion
theory (these notions were only briefly mentioned on the upper
half of p. 70).  Further on, mathematical techniques are used
mostly in analogy with the cylindrical case (see appendix a). This
also holds for the interdependence of the constants ,

, and , which follows the matrix formulation for
solving the set of differential equations, analogous to the cylin-
drical case, where LA-functions constitute the co-efficients of
the set of differential equations. 

Finally, it is not without importance that JEANS (1927, p. 229-
230) devoted a paragraph to ‘nearly’ spherical surfaces. JEANS
shows that nearly spherical surfaces can be treated in the same
way as spherical surfaces, for the squares of the harmonics de-
scribing the small deviations can be neglected. Interestingly, also
TURING (1952, p. 71) regards the forms of various ‘nearly’ spher-
ical structures as closely related to the latter spherical harmonic
patterns (see main text).  

c) Use of normalized Legendre associated functions

The normalized Legendre associated functions (shortly: nor-
malized LA-functions) are introduced in B. RICHARDS extension
of TURING’S posthumously published manuscripts (SAUNDERS,
1992, Part III, pp. 107-118), with a number of references to HOB-
SON (1931). The rationale is to provide a more exact solution for
the morphogenetic equations in the spherical case. As shown at
the end of appendix b (**), TURING (1952) also used LA-func-
tions of degree m = –1, which refer to the notion of normalized
LA-functions. RICHARDS makes extensive use of them in order to
describe the reaction-diffusion process in small organisms (see
section 2 of main text).

From the differential equation describing the reaction-diffu-
sion process in small organisms, the solution obtained for the
concentration function U ( θ , φ , t ) is of the form:

     (22),

where U being real and being the normalized LA
functions, which are defined by :

     (23),

where represents the usual LA-function, with the con-

dition that  and

     (SAUNDERS, 1992, p. 117).

This property, referring to Hobson (1931, p. 162), is inferred
from the theory of conjugate systems of harmonics. A conjugate
system of harmonics of degree n is defined as a system of (2n+1)
harmonics, such that for any pair of them the product of these
harmonics equals zero, or:

 for  (24)

(SAUNDERS, 1992, p. 108).
The biological relevance of these conjugate systems is obvi-

ous, for it enables an important simplification in the number of
harmonics describing concentration or potential functions on the
sphere. When applied to the differential equation for reaction-
diffusion in small organisms (see section 2), it follows that the
function Φ (∇2) , which depends on the concentration function U,
now can be replaced by a constant I, or: 

Accordingly, the general differential equation describing the
changes of morphogen concentrations in time is given by:

     (25)

(SAUNDERS, 1992, p. 108).
According to RICHARDS (see SAUNDERS, 1992, p. 108-111)

equation (25) can now be used to derive the unknown solutions
Sm (t) in expression (22), following the recursion formula:

     (26),

where the auxilliary functions and are defined as
follows:

and

An important simplification results from application of the
following conditions:

 for 

(SAUNDERS, 1992, p. 117).
Numerical examples of these calculations using the recursion

formula (26) have been provided by RICHARDS (see SAUNDERS,
1992, pp. 110-114). According to RICHARDS, it is important to re-
member that the solutions represent deviations from the sphere;
a correct balance between the oscillations of the concentration
function U and the radius of the initial sphere can be obtained
when looking at a suitable biological species (SAUNDERS, 1992,
p.111). Examples of such suitable biological species are found in
the marine organisms of the class Radiolaria (see Fig. 2.c). These
unicellular organisms are surrounded by a skeleton, generally
composed of silica, which forms sharp spines that radiate from
the outer shell of the skeleton. RICHARDS’ calculations for solu-
tions of degree n = 4 reveal spheroid bodies with spines at each
pole and four around the equator, among others. More complex
geometrical forms are obtained by using solutions of higher de-
gree.

** TURING (1952, p. 71) also uses LA-functions with negative integer
degree (-1). This results from the use of normalized LA-functions,
which notions are explained in appendix c. 
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