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SKOUFAS et al. ( 1) presented biometrical data on Antbozoa. My concem is in the sta­

tistical analysis and interpretation of these data. Many statistical incorrectnesses w i Il pro­

bably not lead to interpretation enors due to the robustness of the used techniques or to 

the strength of the analysed effects, otbers however certainly will do so. This study gives 

the opportunity to discuss a number of statistical en·ors of which some occm regularly in 

the literature. 

SKOUFAS et al. ( 1) provide the first biometrical data on the gorgonian Eunicella singu­

laris. Tbere are severa! problems with the tests for normality in (1). The frequency distri­

bution of for example S (Fig. 2 in [1]) shows significant skewness, althougb their test 

shows no deviation from nonnality. Probably tl1is is due to the low power of tbeir nor­

mality tests. One tends to accept nonnali ty and use nonnality-based methods wben sam­

pies are small. Yet, with small samples many normali ty-based methods have limited 

value (2). The authors report a single t-test statistic for the n01:mality test for the d istribu­

tion. To the best of my knowledge tbere are no tests for nonnality using a single t-value. 

The preferred test for normality is the Shapiro-Wilks ' W test because of its good power 

properties as compared to a wide range of alternative tests (3). 

In addition to the dubious validity of the normali ty tests, the p-values are m isinter­

preted. The authors conclude from the non-significant t-values of the nonnali ty tests for 

variables H and S ( 1 : p. 87) that the cotTesponding distributions are respective! y not nor­

mal and normal ( 1 : p . 90) . On the other band it is rather strange that after acceptance of 

the nonnality of, for example the distribution of P.S., and wh.ile explicitly stat.ing d1at the 

distributions are uni modal ( 1 : p . 85), the au thors continue with the detection of severa! 

groups based on the « normal» frequency distribution of the character. 
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SKOUFAS et al. ( 1) correctly argued th at a multiple regression procedure should be used 

to determine the relative contribution of the variables height/length (H/L), nwnber of 

dichotomies (nb. dich.) and surface (S) in explaining the variance in dry weight (P.S.). lt 
follows from the name «multiple regression» that there have to be linear relationships 
between each independent variable (i.e. H/L, nb. dich. and S) and the dependent variable 
(P.S.) (4). The relationship between H/L (S) and P.S. however is only Iinear in the log scale 
(Fig. 4A in [1]) while this transformation was not used in the multiple regression proce­
dure. Furthermore, the dependent variable bas to be normally distributed (3), wbicb is not 
the case (see above). The authors report the F-statistic of the overall significance test of 
the multiple regression as 58.903 with 52 df. The shape of the F- distribution is however 
only t'ully detennined by two values for degrees offreedom, in this case (k, n-k-1) with k 
the number of independent variables (i.e. 3), and n the number of observations (i.e. 55) (5). 
The correct significance test should therefore be based on F (3,51 ). 

Finally, perhaps the most serious complication is the existence of cotTelations among 
the independent variables, the so-called multicollinearity problem (6). Multicollinearity 
implies that part of the variation in the dependent variable may be attributed to more than 
one independent variable (6) and therefore one can not exactly determine the unique con­
tribution of eacb independent variable to the variance of P.S. (the goal of the multiple 
regression in this study). Multicollinearity is severe when independent variables are more 
related to each other than they are to the dependent variable (7). Statistically this means 
th at the coefficient of determination of the regression wh en the itb independent variable is 
regressed against ali other independent variables (r2) is grea ter tb an the coefficient of mul­
tiple determination for the total mode! (r2

1J. A log transfmmation of the variables (to 
induce linear relationships between independent and dependent variables, see higher) 
would not solve the problem of multicollinearity. For example the r2 of logS witb only one 
of the two otber independent variables (nb. dich .) is already 0. 8 (see Fig. 5 in [1]). The 
value of r2; for logS will be even grea ter because it will a Iso include the unique variance 
of logS explained by H/L. As a result r2; will al most certain! y be greater than t-2101 (mode! 
with untransformed data: r2

101= 0.72) indicating severe multicollinearity. The problem of 
multicollinearity can be so lved by combining indeflendeot variables into principal com­
ponents or by usiog biased estimation methods sucb as ridge regression (6). In addition, 

the re is another problem in the determination of the variance explained by the independent 

variables. To assess the fraction of variance explained by a s ingle factor, one compare t-210 1 

to r2 for the mode! with ali except the factor of interest: the difference (l") is the variance 
uniquely explained by that single factor (6). As a logical result the coefficient of determ i­
nation of the total mode! should equal the sum of the r2

1S. The r- quare for the total rnodel 
they repmt is O. 72 while the sum of the r-squares associated witb each independent vari­
ab le sums to 1.86 (th is is also theoretically impossible because > 1.00). This means that the 
given r-squares do not answer the pmpose of the analysi , namely to show «de quelle 
matli ère in terviennent les troi s paramètres .. . dans la détermination de la variance de 
P.S.» (1). Tberefore the explaining capacity of the independent variables will be smaller 

tban reported. 
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The allometric relationships between the measured variables were determined with 
ordinary !east squares linear regressions on log-transfom1ed data ( 1, 8). However, wh en 
both variables are subject to measurement error, as is the case, a critical assumption of 
ordinary !east squares regression has been violated and the estima tes of slopes are biased 
(5, 9, for sorne examples of bias introduced in the context of allometry see 10). This is 
especially important if one attempts to compare scaling exponents with values expected 
under the null hypothesis of isometry. In such cases one should use type II regression (5 , 
9). In morphometric work logarithmically transformed variables are often employed, and 
their functional relationship should be estimated by the slope of the major axis of the 
bivariate sample (5). The differences between slopes estimated by both techniques 
decrease as the correlation coefficients increase (9). Therefore especially the slope of log 
H/L against log P.S. will be biased. 

Even after ignoring the bias in the calculated scaling exponents, there are some prob­
lems with their interpretation. Isometry is specified by the ratio of the dimensions of the 
variables (9). Allometry is the departure from isometry. SKOUFAS et al. (1) fOlmd a scaling 
exponent of0.7 between P.S. and S (after log transformation). Because thjs value is smal­
ler than three, they conclude that there is a positive allometric relationsrup between both 
variables. The calculated scaling exponent should however be tested against the appro­
priate nu li hypothesis of isometry. The expected slope of a plot of log area versus log dry 
weight is L'/U=2/3 (11) and not three . Therefore it is highly probable that the claimed pos­
itive allometric relationship is in fact a purely isometric one. Also the allometry of P.S. 
against H/L and nb. dich. against Sis checked by comparing the scaling exponents at sight 
(and not statistically) witb values generated by a wrong null hypothesis (respectively with 
a scaling exponent un der isomet:Iy of three and two ). 

l would like to tbank Tilleny Backeljau, Luc De Bruyn and Stefan Van Dongen for 
useful discussions and an anooymous referee for comments on the manuscript. Wim 
Jacobs and Solange Goethals provided me with some key articles. The author is a 
Research Assistant of the Fund for Scientific Researcb - Flanders (Belgium FWO). 
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