Skip to content. | Skip to navigation

Personal tools

You are here: Home
964 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Ambigolimax valentianus (Férussac, 1822) à Uccle - Récit d’une naissance
Located in Library / RBINS Staff Publications 2020
Article Reference Description of a remarkable and huge new species of Zacatrophon (Muricidae: Ocenebrinae) from the Gulf of California
Located in Library / RBINS Staff Publications 2020
Article Reference Three new species of Muricidae (Ocenebrinae, Pagodulinae) from the Gulf of California, Mexico and update of the living muricids from the area
Located in Library / RBINS Staff Publications 2020
Article Reference Mainstreaming biodiversity conservation into development cooperation—highlights from an ALTER-NET-EKLIPSE workshop
Located in Library / RBINS Staff Publications 2020
Article Reference Functional volumes, niche packing and species richness: biogeographic legacies in the Congo Basin
Located in Library / RBINS Staff Publications 2020
Inproceedings Reference The GEPATAR project: GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium
Belgium is well-known for its diverse collection of built heritage, visited every year by millions of people. Because of its cultural and economic importance, conservation is a priority at both federal and regional levels. Monuments may suffer from structural instabilities related to industrial and urban development, such as groundwater extraction, mining and excavation activities. Adequate protection and preservation requires an integrated analysis of environmental, architectural and historical parameters. The aim of the GEPATAR project is to create an online interactive geo-information tool that integrates information about Belgian heritage buildings and the occurrence of ground movements. The toolbox will allow the user to view and be informed about buildings potentially at risk due to differential ground movements and thus help improving the management of built patrimony. Countrywide deformation maps were produced by applying advanced multi-temporal InSAR techniques to time-series of SAR data. We used StaMPS (Stanford Method for Persistent Scatterers; Hooper et al. 2012) to process ERS-1/2 and Envisat archive data and MSBAS (Multidimensional Small Baseline Subsets; Samsonov & d’Oreye 2012) to combine both ascending and descending tracks of Sentinel-1. High-resolution deformation maps of selected urban centres were obtained by processing VHR SAR data (TerraSAR-X and CosmoSkyMed). Within the GEPATAR toolbox, the deformation maps are integrated with other geo-data layers such as geology, land-use, the location of built heritage and architectural data. Feature-based data fusion techniques are applied to create ground movement risk maps. The output risk maps will be regularly updated with the availability of new SAR acquisitions.
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference Spectral Requirements for the Development of a New Hyperspectral Radiometer Integrated in Automated Networks - the Hypernets Sensor
Networking of automated instruments on unmanned platforms has proved to be the most effective way to provide validation data for earth observation optical missions. However, with most current networks, such as AERONET-OC [1] for water and RADCALNET for land [2], the validation data are multispectral and/or limited in viewing geometries, resulting in modelling associated uncertainties to cover all spectral bands of all sensors and to correspond to satellite viewing geometries. Therefore, the HYPERNETS Project is developing a new hyperspectral radiometer to be integrated in automated networks. The main goal of the project is to acquire hyperspectral measurements of water and land reflectance and validate every optical earth observation satellite remote-sensing sensor in the Visible-Near Infrared (VNIR) and Short-wave Infrared (SWIR) spectral range. The present study reports the spectral characteristics of current and future earth observation missions. These characteristics represent the main drivers for the design of the HYPERNETS sensor.
Located in Library / RBINS Staff Publications 2019
Article Reference First record of the invasive longhorn crazy ant, Paratrechina longicornis (Latreille, 1802) (Hymenoptera: Formicidae) from Mt. Elgon, eastern Uganda
We report the first observation of the invasive longhorn crazy ant (Paratrechina longicornis) in the Mount Elgon region of eastern Uganda. About 43 000 ants were sampled in 256 locations throughout the Ugandan foot slopes of Mt. Elgon in the years 2014, 2015 and 2016. We found P. longicornis in five locations in and around the town of Budadiri, Sironko district. The visual species identification was confirmed by COI gene-based DNA barcoding. That this species was found in only a small area suggests that it has only been recently introduced. The impact that P. longicornis will have on the local agricultural system or the biodiversity within the Mount Elgon National Park remains unclear. The Mt. Elgon region is a unique key biodiversity area where baseline data can be collected now to quantify the effects of P. longicornis as it increases its distribution within the region.
Located in Library / RBINS Staff Publications 2020
Article Reference Resurrection and neotype designation of Pilumnus spinulosus Kessler, 1861 (Crustacea: Decapoda)
ABSTRACT. The scientific name Pilumnus spinulosus Kessler, 1861 is resurrected for the representatives of the brachyuran genus Pilumnus Leach, 1816 (Decapoda: Brachyura: Pilumnidae), occurring along the northern coastal line of the Black Sea. This species has been mistakenly identified as P. hirtellus (Linnaeus, 1761) and recently, based on DNA data, referred to as P. aestuarii Nardo, 1869. Furthermore, a neotype of P. spinulosus Kessler, 1861 is designated as the original material is presently considered as lost. P. hirtellus ponticus Czerniavsky, 1868, P. aestuarii Nardo, 1869, P. hirtellus intermedia Czerniavsky, 1884 are considered as junior synonyms of P. spinulosus Kessler, 1861. РЕЗЮМЕ. Научное название Pilumnus spinulosus Kessler, 1861 восстановлено для представителей рода Pilumnus Leach, 1816 (Decapoda: Brachyura: Pilumnidae), встречающегося вдоль северной бере- говой линии Черного моря. Ранее этот вид был ошибочно идентифицирован как P. hirtellus (Linnaeus, 1761), а позднее, на основании данных ДНК, отнесён к P. aestuarii Nardo, 1869. Видовые назва- ния P. hirtellus ponticus Czerniavsky, 1868, P. aestuarii Nardo, 1869, P. hirtellus intermedia Czerniavsky, 1884 рассматриваются как младшие синонимы P. spinulosus Kessler, 1861. How to cite this article: Marin I.N., d’Udekem d’Acoz C. 2019. Resurrection and neotype designation of Pilumnus spinulosus Kessler, 1861 (Crustacea: Decapoda) // Arthropoda Selecta. Vol.28. No.4. P.545– 548. doi: 10.15298/arthsel. 28.4.06
Located in Library / RBINS Staff Publications 2019
Article Reference Were ancient foxes far more carnivorous than recent ones? Carnassial morphological evidence
Crown shape variation of the first lower molar in the arctic (Vulpes lagopus) and red foxes (Vulpes vulpes) was analyzed using five groups of morphotypes. Carnassial morphologies were compared between the species and between spatially and temporally distant populations: one Late Pleistocene (n = 45) and seven modern populations of the arctic fox (n = 259), and one Late Pleistocene (n = 35) and eight modern populations of the red fox (n = 606). The dentition of Holocene red foxes had larger morphotype variability than that of arctic foxes. The lower carnassials of the red fox kept have some primitive characters (additional cusps and stylids, complex shape of transverse cristid), whereas the first lower molars of the arctic fox have undergone crown shape simplification, with the occlusal part of the tooth undergoing a more pronounced adaptation to a more carnivorous diet. From the Late Pleistocene of Belgium to the present days, the arctic fox’s crown shape has been simplified and some primitive characters have disappeared. In the red fox chronological changes in the morphology of the lower carnassials were not clearly identified. The phyletic tree based on morphotype carnassial characteristics indicated the distinctiveness of both foxes: in the arctic fox line, the ancient population from Belgium and recent Greenland made separate branches, whereas in the red foxes the ancient population from Belgium was most similar to modern red foxes from Belgium and Italy.
Located in Library / RBINS Staff Publications 2020