Skip to content. | Skip to navigation

Personal tools

You are here: Home
1498 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Salinity predicts the distribution of chlorophyll a spring peak in the southern North Sea continental waters
In the North Sea, the coastal waters of Belgium and The Netherlands regularly exhibit intense spring phytoplankton blooms where species such as Phaeocystis recurrently form a potential ecological nuisance. In the Belgian and Dutch continental shelves (BCS and DCS), we observe a direct correlation between the chlorophyll a spring maximum (Chlmax) and the nutrients (DIN and DIP) available for the bloom. As the nutrients are themselves strongly correlated with salinity, a rationale is developed to predict Chlmax from winter salinity. The proposed rationale is first tested in a theoretical case with a 3D-biogeochemical model (3D-MIRO&CO). The method is then applied to independent sets of in situ observations over 20 years in the BCS and the DCS, and to continuous FerryBox data in April 2008. Linear regressions explain the relationships between winter nutrients and winter salinity (R2 = 0.88 to 0.97 with model results, and R2 = 0.83 to 0.96 with in situ data). The relationship between Chlmax and the available nutrients across the salinity gradient is also explained by yearly linear regressions (R2 = 0.82 to 0.94 with model results, and R2 = 0.46 to 0.98 with in situ data). Empirical ‘DIP requirement’ and ‘DIN requirement’ for the spring biomass bloom formation are derived from the latter relationships. They depend i.a. on the losses from phytoplankton during the spring bloom formation, and therefore show some interannual variability (8–12% for DIP and 13–20% for DIN). The ratio between nutrient requirements allows predicting in winter which nutrient will eventually limit the spring biomass bloom along the salinity gradient. DIP will generally be limiting in the coastal zone, whereas DIN will generally be limiting offshore, the switch occurring typically at salinity 33.5 in the BCS and 33.6 in the DCS. N reduction should be prioritized to limit Phaeocystis in the coastal zone, with target winter DIN:DIP ratios below 34.4 molN molP−1 in the BCS, or 28.6 molN molP− 1 in the DCS.
Located in Library / RBINS Staff Publications 2019
Article Reference Changes in chlorophyll concentration and phenology in the North Sea in relation to de‐eutrophication and sea surface warming
At least two major drivers of phytoplankton production have changed in recent decades in the North Sea: sea surface temperature (SST) has increased by ~ 1.6°C between 1988 and 2014, and the nitrogen and phosphorus loads from surrounding rivers have decreased from the mid‐1980s onward, following reduction policies. Long time series spanning four decades (1975–2015) of nutrients, chlorophyll (Chl), and pH measurements in the Southern and Central North Sea were analyzed to assess the impact of both the warming and the de‐eutrophication trends on Chl. The de‐eutrophication process, detectable in the reduction of nutrient river loads to the sea, caused a decrease of nutrient concentrations in coastal waters under riverine influence. A decline in annual mean Chl was observed at 11 out of 18 sampling sites (coastal and offshore) in the period 1988–2016. Also, a shift in Chl phenology was observed around 2000, with spring bloom formation occurring earlier in the year. A long time series of pH in the Southern North Sea showed an increase until the mid‐1980s followed by a rapid decrease, suggesting changes in phytoplankton production that would support the observed changes in Chl. Linear correlations, however, did not reveal significant relationships between Chl variability and winter nutrients or SST at the sampling sites. We propose that the observed changes in Chl (annual or seasonal) around 2000 are a response of phytoplankton dynamics to multiple stressors, directly or indirectly influenced by de‐eutrophication and climate warming.
Located in Library / RBINS Staff Publications 2019
Article Reference Evidence for Faster X Chromosome Evolution in Spiders
Located in Library / RBINS Staff Publications 2019
Article Reference Species turnover between the northern and southern part of the South China Sea in the Elaphropeza Macquart Mangrove fly communities of Hong Kong and Singapore (Insecta: Diptera: Hybotidae)
Located in Library / No RBINS Staff publications
Article Reference The spingtail catchers of the genus Neurigona (Insecta, Diptera, Dolichopodidae) in the primary forest of Bukit Timah Nature Reserve, Singapore
Located in Library / No RBINS Staff publications
Article Reference Empidoid flies from Cabo Verde (Diptera, Empidoidea, Dolichopodidade and Hybotidae) are not only composed of Old World tropical species
Located in Library / No RBINS Staff publications
Article Reference Comparing the results of four widely used automated bat identification software programs to identify nine bat species in coastal Western Europe
Located in Associated publications / Belgian Journal of Zoology / Bibliographic References
Inproceedings Reference Early dispersal for quadrupedal cetaceans: an amphibious whale from the middle Eocene of the southeastern Pacific
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference Late Miocene baleen whales from the Peruvian desert
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference A diverse Miocene toothed whale (Odontoceti) fauna from Calvert Cliffs, Atlantic Coastal Plain, U.S.A.
Located in Library / RBINS Staff Publications 2019