Skip to content. | Skip to navigation

Personal tools

You are here: Home
3072 items matching your search terms.
Filter the results.
Item type

New items since

Sort by relevance · date (newest first) · alphabetically
Article Reference Intra- and Intertaxon stable O and C isotope variability of fossil fish otoliths: an early Eocene test case
Knowledge of basic data variability is essential for the interpretation of any proxy-based paleotemperature record. To evaluate this for δ18O stable isotope paleothermometry based on early Paleogene fish otoliths from marginal marine environments, an intra- and interspecific stable O and C isotope study was performed at a single locality in the southern North Sea Basin (Ampe Quarry, Egem, Belgium), where shallow marine sands and silts are exposed. The age of the deposits is early late Ypresian (ca. 50.9 Ma) and falls within the early Eocene climatic optimum (EECO) interval. In each of four fossiliferous levels sampled, the same three otolith species were analyzed (Platycephalus janeti, Paraconger papointi and “genus Neobythitinorum” subregularis). Intrataxon stable isotope spread amounts on average 2.50-3.00‰ for all taxa and is present in all levels. This implies that each sample level comprises substantial variability, which can be attributed to a combination of temporal and taphonomic effects. More importantly, intertaxon offsets of 4.60‰ in δ13C and 2.20‰ in δ18O between the mean values of the three otolith species are found, with “N.” subregularis representing more positive values relative to the other species. We hypothesize that freshwater influence of coastal waters is the most likely cause for these discrepancies. Similar analyses on two coastal bivalve species (Venericardia sulcata and Callista laevigata) corroborate this hypothesis. Accordingly, δ18O values measured on “N.” subregularis otoliths probably represent a more open oce- anic signal, and therefore seem well-suited for δ18O stable isotope paleothermometry. This study highlights the importance of investigating data variability of a biogenic carbonate paleotemperature proxy at the species level, before applying paleotemperature equations and interpreting the outcome.
Located in Library / RBINS Staff Publications
Article Reference Biotic impact of Eocene thermal maximum 2 in a shelf setting (Dababiya, Egypt).
The Paleocene-Eocene thermal maximum (PETM) initiated a global biotic event with major evolutionary impacts. Since a series of minor δ13C and δ18O excursions, indicative of hyperthermals, now appears to characterize early Eocene climate, it remains to be investigated how the biosphere responded to these warming events. We studied the Esna Formation at Dababiya (Nile Basin, Egypt), in order to identify Eocene thermal maximum 2 (ETM-2) and to evaluate the foraminiferal and ostracode patterns. The studied interval generally consists of gray-brown marls and shales and is interrupted by a sequence of deviating lithologies, representing an early Eocene Egyptian environmental perturbation that can be linked to ETM-2. The ETM-2 interval consists of brownish shales (bed 1) to marls (bed 2) at the base that grade into a foraminifera-rich chalky limestone (bed 3) at the top. This conspicuous white limestone bed forms the base of the Abu Had Member. A distinct negative δ13C excursion of approximately 1.6‰ is recorded encom- passing this interval and a second negative δ13C shift of 1‰ occurs 5 m higher. These two isotope events are situated respectively in the basal and lower part of the calcareous nannoplankton zone NP11 and appear to correlate with the H1 and H2(?) excursions observed in the deep-sea records. The lower δ13C excursion is associated with benthic foraminiferal and ostracode changes and settlement of impoverished anomalous foraminiferal (planktic and benthic) assemblages, indicating a transient environmental anomaly, disrupting the entire marine ecosystem during ETM-2. Our observations indicate some similarities between the sedimentary and biotic expressions of ETM-2 and the PETM at Dababiya, pointing to similar processes operating in the Egyptian Basin during these global warming events.
Located in Library / RBINS Staff Publications
Article Reference Early Paleogene δ13C and δ18O records based on marine ostracodes: implications for the upper Danian succession at Sidi Nasseur (Tunisia) and their application value in paleoceanography
Ostracode and other microfossil assemblages from the Tunisian Trough have previously been studied to characterize paleoenvironmental conditions during the late Danian interval. Whereas the preservation of foraminifera is generally not sufficient for stable isotope studies, well preserved ostracodes provide continuous upper Danian stable isotope records (δ13C, 18O) at Sidi Nasseur, W Tunisia. The late Danian is considered to cover a hyperthermal, known as the “Latest Danian Event” (LDE; ~61.75 Ma) or “Top C27n Event” and has been unequivocally identified in benthic foraminiferal isotopes from shelf sediments in Egypt and deep-sea material from the Pacific Ocean. Stratigraphic changes in the isotope ratios of the genus Bairdia reveal a rather scattered record for δ13C lacking any pronounced negative δ13C excursion, probably due to the many factors influencing δ13C in ostracodes like metabo- lism, diet or dissolved inorganic carbon of sea-water. The accompanying δ18O record is less ambiguous showing a shift towards lower values close to the level where the LDE is to be expected, but minimum values are similar to δ18O values at the base and top of the studied sequence. These data suggest that the core of the negative stable isotope excursions of the LDE is lost in the stratigraphic gap at the planktic foraminiferal P3a/P3b and calcareous nannofossil NTp7A/NTp7B subzonal boundaries, so that the LDE could not be unequivocally identified in Tunisia. A cross-plot of δ13C and δ18O of ostracode valves displays distinctive clusters for smooth-shelled taxa like Bairdia and others as well as for ornamented taxa, with the latter group showing substantially lower values for both δ13C and δ18O. This pattern strongly resembles those from early Eocene data from southwestern France and Recent ostracodes from the Iceland Plateau. The offsets suggest substantial differences in life style, food source or isotope fractionation during the calcification process for different shell morphologies in ostracodes.
Located in Library / RBINS Staff Publications
Article Reference Large-scale glaciation and deglaciation of Antarctica during the Late Eocene: Comment.
Peters et al. (2010) present a hypothesis for a late Eocene glaciation, by interpreting an incision surface at Wadi Al-Hitan (Egypt) as indicating a 40+ m fall in eustatic sea levels. We argue that there is no evidence for a major fall in sea level, and that their calibration of the event is unproven.
Located in Library / RBINS Staff Publications
Article Reference Characterization of the Latest Danian Event by means of benthic foraminiferal assemblages along a depth transect at the southern Tethyan margin (Nile Basin, Egypt).
The Latest Danian Event (LDE) has been recognized on the southern Tethyan margin (Egypt; Tunisia), and in the Atlantic (Zumaia, Spain) and Pacific Oceans (ODP Site 1209). Based on a supraregional carbon isotope excursion, and a negative shift in oxygen isotopes in the Pacific it has been suggested that the LDE is an early Paleogene transient warming event. So far the environmental effects of the LDE have been observed in few sections and details on its impact and duration are scarce. We present a quantitative study of benthic foraminiferal assemblages retrieved from five sections along a depth transect on the Paleocene southern Tethyan shelf (Nile Basin, Egypt) to assess paleoenvironmental change during the LDE. The lithologic sequences and foraminiferal assemblages indicate that the onset of the LDE is related to widespread shelf dysoxia. The organic-rich laminated marls of lower LDE bed I contain levels devoid of benthic foraminifera. During the later stage of the LDE (dark-gray shales of bed II) the shelf is repopulated by a Neoeponides duwi benthic assemblage, occurring in all sections, initiating a gradual restoration of normal-marine shelf environments. Q-mode and R-mode correspondence analysis assist in the interpretation of the N. duwi assemblage, which is related to disturbed conditions at the sea floor following oxygen depletion and increased organic loading. The sharp lithologic boundary at the base of the LDE suggests that the event coincides with a rapid transgression following a sea-level fall, with an estimated amplitude of ~ 50 m or less. Comparison with the Dan-C2 and ELPE/MPBE, two proposed transient warming episodes preceding and postdating the LDE, shows that the three Paleocene events have several characteristics in common. However, the duration of the LDE (~ 200 kyr) exceeds the estimated duration of the other events, and a sea-level cycle is only reported from the LDE.
Located in Library / RBINS Staff Publications
Article Reference Perturbation of a coastal Tethyan environment during the Paleocene-Eocene thermal maximum in Tunisia (Sidi Nasseur and Wadi Mezaz).
Despite the large number of studies on the Paleocene–Eocene thermal maximum (PETM), the knowledge of environmental and biotic responses in shallow marine environments remains quite poor. Benthic foraminiferal assemblages of the Sidi Nasseur and Wadi Mezaz sections in Tunisia were studied quantitatively and the paleoecologic interpretations provide new insights into the complex relationship between PETM global warming and perturbations of shallow marine settings. These sections expose upper Paleocene to lower Eocene shales and marls of the El Haria Formation up to the phosphate layers of the Chouabine Formation underlying the El Garia limestones. The Sidi Nasseur section contains a more complete and expanded Paleocene–Eocene boundary interval compared to Wadi Mezaz, although being truncated at the top. The Wadi Mezaz section contains a more complete post-PETM interval. The studied interval can be subdivided into a sequence of 4 biofacies, representing respectively a latest Paleocene biofacies, two PETM biofacies and one post-PETM Eocene biofacies. The latest Paleocene biofacies 1 consists of numerous calcareous benthic foraminifera (e.g. Anomalinoides midwayensis, Frondicularia aff. phosphatica and various Bulimina and Lenticulina species), abundant noncalcareous taxa (Haplophragmoides) and rare planktic foraminifera, indicating a slightly hypersaline eutrophic inner neritic to coastal environment, regularly interrupted by oxygen deficiency (moderate dysoxia). During the latest Paleocene, this highly productive environment shallowed as indicated by the increasing abundances of A. midwayensis. The variable dominance of non-calcareous agglutinated taxa in biofacies 1 indicates post-mortem dissolution effects. The TOC δ13Corg record reveals a sharp negative excursion, marking the base of the Eocene. In general, the absence of lithologic changes, an increasing sedimentation rate and absence of reworking indicate that the initial part of the PETM is complete and expanded in the Sidi Nasseur section. A sharp faunal turnover coincides with this negative δ13Corg excursion and is characterized by the disappearance or diminution of common Paleocene taxa in this area. During the PETM, benthic foraminifera are less abundant and consist of opportunistic non-calcareous taxa together with deeper dwelling (middle neritic) lagenids and buliminids (biofacies 2 and 3). Planktic foraminifera, dominated by flat-spired Acarinina (mainly A. multicamerata), become more abundant, as observed in many open marine sequences worldwide. All these faunal parameters suggest more stressed probably severe dysoxic sea floor conditions within a transgressive phase during the onset of the PETM. An estimation of the total duration of the Sidi Nasseur PETM interval is difficult to establish, yet the lack of recovery carbon isotope values suggests that the preserved PETM interval reflects only a part of the CIE “core”. The top of the PETM interval is truncated due to local (?) erosion during the early Eocene. The Eocene recovery fauna is mainly composed of Lenticulina and Stainforthia species (biofacies 4), indicating restricted coastal to hyposaline lagoonal eutrophic conditions, distinctly different from earlier environmental conditions.
Located in Library / RBINS Staff Publications
Article Reference Were all Devonian seeds cupulate? A reinvestigation of Pseudosporogonites Hallei, Xenotheca Bertrandii and Aglosperma spp.
Premise of research. Although the most comprehensively known Devonian seeds were borne in a “telomic” cupule, those of some species have been postulated as being borne terminally on naked axes lacking a cupule. Uncertainty remains as to whether such seeds were shed from a cupule before preservation. We reinvestigate the Upper Devonian fossils Pseudosporogonites hallei and Xenotheca bertrandii from Belgium and the similar ovules Aglosperma quadrapartita and Aglosperma avonensis from Britain and Aglosperma sp. from North America to consider their structure and organization and to determine whether they were cupulate. Methodology. Compressions/adpressions of X. bertrandii and Pseudosporogonites from Belgium and A. quadrapartita and A. avonensis from the United Kingdom, as well as Anglosperma sp. from Pennsylvania, were prepared, mainly by dégagement. Observation and photography were carried out using crossed polarizing filters. Pivotal results. Pseudosporogonites hallei, X. bertrandii, and A. quadrapartita comprise single ovules borne within small, radially symmetrical, uniovulate cupules. Integuments are entire at the chalaza but form flattened lobes distally. While a cupule is unknown in A. avonensis, its comparable integument morphology suggests that it was shed from a uniovulate cupule. Although the species are distinct from each other, their similarities show that they are closely related and belong to a single genus, for which the name Pseudosporogonites has priority. We emend P. hallei in light of our findings and erect the combinations P. bertrandii (Stockmans) C. Prestianni, J. Hilton et W. Cressler, P. quadrapartitus (J. Hilton et D. Edwards) C. Prestianni, J. Hilton et W. Cressler, and P. avonensis (J. Hilton) C. Prestianni, J. Hilton et W. Cressler. Conclusions. The uniovulate cupule in Pseudosporogonites is distinct from multiovulate telomic cupules of other Devonian seeds and expands the phenotypic diversity seen during the earliest phase of seed plant radiation, which was geologically instantaneous. Hydrasperman pollination in all proven Devonian seeds demonstrates evolution from a common ancestor, but finding morphological intermediates between seed and free-sporing plants remains a significant challenge to evolutionary plant biology.
Located in Library / RBINS Staff Publications
Article Reference Possible evidence of mammoth hunting at the Neanderthal site of Spy (Belgium)
Spy, a Belgian cave site famous for its Neanderthal remains, contains a wide spectrum of Pleistocene species. Horse, cave hyena, woolly mammoth, woolly rhinoceros and reindeer are the primary taxa. The Spy cave was used alternately by prehistoric humans and Pleistocene carnivores. This study considers whether prehistoric humans or carnivores are responsible for the large number of mammoth remains at the site. It is argued, on the basis of the frequency distribution of the skeletal elements of the mammoth, the age distribution of the mammoth molars, and the diet of the large carnivores and of the prehistoric humans, that the mammoth assemblage of Spy accumulated at the site through the activities of prehistoric humans. On the basis of AMS dates, the stratigraphic position of a number of mammoth molars and the absence of red ochre on the mammoth molars, it was concluded that these prehistoric humans were Neanderthals rather than Anatomically Modern Humans.
Located in Library / RBINS Staff Publications
Article Reference Community structure of harpacticoid copepods in intertidal and shallow-water habitats of Cat Ba archipelago (Vietnam, South China Sea)
The assemblage structure of harpacticoid copepods inhabiting the soft sediments of littoral and sublittoral areas of Cat Ba archipelago (South China Sea) is analysed. Three basic types of harpacticoid taxocenes were observed in the upper sublittoral. Main dominant species of taxocenes were Amphiascoides sp., Stenhelia latioperculata, Paramphiascella sp., Phyllopodopsyllus sp., Tisbe sp.1 and Amphiascoides sp. In addition, the main characteristics of harpacticoid species composition in littoral rock pools are described. A comparative analysis of shallow-water harpacticoid communities from different biotopes of the tropical region is presented, and shows that harpacticoid diversity and abundance are lowest in muddy sediments. Highest diversity and abundance are found in washed sands and silty sands with detritus. In general, the structure of muddy bottom communities is the most homogeneous throughout the tropics. Mangrove forests have no significant influence on harpacticoid taxocene structure. Harpacticoid associations of washed sands and silty sands with detritus demonstrate greater diversity and are region-specific.
Located in Library / RBINS Staff Publications
Article Reference On the brink - investigating biodiversity in endangered crater lakes of the Amber Mountains National Park (Madagascar)
Located in Library / RBINS Staff Publications