Introduction: Efforts to collect ecological data have intensified over the last decade. This is especially true for freshwater habitats, which are among the most impacted by human activity and yet lagging behind in terms of data availability. Now, to support conservation programmes and management decisions, these data need to be analyzed and interpreted; a process that can be complex and time consuming. The South African Biodiversity Data Pipeline for Wetlands and Waterbirds (BIRDIE) aims to help fast and efficient information uptake, bridging the gap between raw ecological datasets and the information final users need. <br /><br /> Methods: BIRDIE is a full data pipeline that takes up raw data, and estimates indicators related to waterbird populations, while keeping track of their associated uncertainty. At present, we focus on the assessment of species abundance and distribution in South Africa using two citizen-science bird monitoring datasets, namely: the African Bird Atlas Project and the Coordinated Waterbird Counts. These data are analyzed with occupancy and state-space models, respectively. In addition, a suite of environmental layers help contextualize waterbird population indicators, and link these to the ecological condition of the supporting wetlands. Both data and estimated indicators are accessible to end users through an online portal and web services. <br /><br /> Results and discussion: We have designed a modular system that includes tasks, such as: data cleaning, statistical analysis, diagnostics, and computation of indicators. Envisioned users of BIRDIE include government officials, conservation managers, researchers and the general public, all of whom have been engaged throughout the project. Acknowledging that conservation programmes run at multiple spatial and temporal scales, we have developed a granular framework in which indicators are estimated at small scales, and then these are aggregated to compute similar indicators at broader scales. Thus, the online portal is designed to provide spatial and temporal visualization of the indicators using maps, time series and pre-compiled reports for species, sites and conservation programmes. In the future, we aim to expand the geographical coverage of the pipeline to other African countries, and develop more indicators specific to the ecological structure and function of wetlands.
Located in
Library
/
RBINS Staff Publications 2023
Emerging infectious diseases (EIDs) pose a significant threat to global public health. Among the factors contributing to the increase of EIDs today, habitat degradation stands out as a prominent driver, exerting both direct and indirect influences on disease dynamics. While it is commonly assumed that simply reversing ecosystem degradation will restore disease regulation mechanisms, such a presumption may oversimplify the complex response involved. My PhD project aims to delve deeper into the mechanisms underlying the impact of ecosystem restoration on zoonotic disease risk by examining terrestrial small mammal (TSM) and microparasite diversity within sampling sites following a chronosequence of ecosystem restoration in the Congo Basin. Through comprehensive sampling methods, including the capture of TSMs, and collection of iDNA and acoustic samples, the project will investigate how small mammal and microparasite diversity and prevalence evolve over time post-restoration. An emphasis will be placed on a subset of vector-borne and directly transmitted microparasites associated with African TSMs frequently found in the Congo Basin (i.e. Hepaciviruses, Paramyxoviruses, Orthonairovirus, Leptospira, Bartonella, and Anaplasma). The findings of this study will help unravel the complex interactions between ecosystem restoration, biodiversity, and zoonotic disease risk, offering crucial insights for the improvement and safeguarding of human, animal, and ecosystem health. This research is situated within the framework of the RESTOREID project (Horizon Europe; PI: Herwig Leirs), which aims to investigate the role of landscape restoration in mitigating disease risk using various field sites in Europe and Africa.
Located in
Library
/
RBINS Staff Publications 2025