Skip to content. | Skip to navigation

Personal tools

You are here: Home
2184 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference Update of the natural building stone atlas for Belgian Limburg.
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference Updating the theories on ammonoid extinction
Since Alvarez et al. (1980) found new evidence for the impact of catastrophic events on earth’s biota, hypothesis and theories explaining the fossil record (re)gained a lot of attention. The extraterrestrial origin of the anomalous iridium concentrations seemed highly controversial at first, but nowadays the Chicxulub ‘accident’ has become the marker for the start/base of the Paleogene. Its pivotal role in the Mesozoic-Cenozoic faunal turnover cannot be refuted (Schulte et al 2010). However, alternative theories remain being published. Of these, the Deccan volcanism with its widespread flood basalts stepped prominently forward as one of the main triggers, especially when trying to explain the gradual diversity decline within the fossil record. The inconsistencies between the proposed theories generally root in too narrowly geographically and geologically spread datasets. This applies to most fossil groups, and especially to the ammonoids (Class Cephalopoda, °Early Devonian – †Late Cretaceous). A compilation of ammonoid occurrences of Late Maastrichtian age published by Kiessling & Claeys (2002) evidenced the lack of a globally well distributed dataset. In this compilation, North Africa was left as a blind spot, while Tunisia had been the centre of the K/Pg mass extinction debate for almost three decades, e.g. with the definition of the GSSP for the base of the Paleogene at El Kef. Both at the GSSP and several other sections in the Tunisian Trough Basin, ammonoids were found within the topmost meters of the Maastrichtian, until very close to the K/Pg boundary level. About 900 uppermost Maastrichtian ammonoids were collected, all from within the last 420.000 years of the Cretaceous. With 22 species on record, belonging to 18 genera and 10 families, and with representatives of each of the four large ammonoid suborders (Phylloceratina, Lytoceratina, Ammonitina and Ancyloceratina), the Tunisian fauna demonstrates that ammonoids were both taxonomically and morphologically diverse until their very end. An updated version of the compilation of latest Maastrichtian ammonoid occurrences documents at least 53 species, 29 genera and 13 families in the ultimate half million year of the Cretaceous, in many more localities and occurring in a wide variety of settings. When the Tunisian ammonoid species richness data are plotted next to all time constraints of the possible causes, the possibility of Deccan flood basalt volcanism negatively influencing ammonoid diversity must be refuted. A major extinction caused by the Chicxulub impact seems the most plausible theory at present. Through inducing a mass kill of the marine plankton, the juvenile ammonoids lost their primary food source leading to their final extinction. Alvarez, L.W., Alvarez, W., Asaro, F., Michel, H.V., 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095-1108. Kiessling, W., Claeys, P., 2002. A geographic database approach to the KT Boundary. In Buffetaut, E., Koeberl, C. (Eds), Geological and Biological Effects of Impact Events, Springer-Verlag Berlin, 83-140. Schulte, P. & 40 authors, 2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 327, 1214-1218.
Located in Library / RBINS Staff Publications
Article Reference Upper Frasnian deposits at the Lahonry quarry (Lompret, Belgium): conodont biostratigraphy, microvertebrates and bentonites
Located in Library / RBINS Staff Publications
Inproceedings Reference Upper Oligocene lithostratigraphic units and the transition to the Miocene in Belgium: can we bring the Dutch, Belgian and German practice in line by using a common nomenclature20?
Located in Library / RBINS Staff Publications 2022
Inproceedings Reference Upper stability limit of authigenic monazite in the Rocroi Inlier
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference Upper stability limit of authigenic monazite in the Rocroi Inlier
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference Use of ocean color satellite data to study the dynamics of suspended particles in the Yangtze River plume (East China Sea)
A multi-sensor algorithm is applied to MODIS and MERIS satellite data in order to quantify suspended particulate matter (SPM) in the Yangtze River plume (East China Sea). Several atmospheric correction methods are tested; a simple but operational method is finally selected as appropriate for MODIS, MERIS and GOCI satellite data. As most of the methods for atmospheric corrections of satellite data fail over such highly turbid waters, an adaptation of the black pixel assumption is used to correct for the aerosol contribution. The retrieved seawater reflectance at red wavebands appears as the most sensitive to SPM concentrations but tends to saturate at concentrations beyond 100 mg.l(-1). By opposition the near-infrared seawater reflectance does not saturate even at extremely high concentrations of 1000 mg.l(-1). Overall, the most robust relationship between the SPM concentration and seawater reflectance is obtained considering a spectral ratio between the near-infrared (e. g., 850 nm) and visible (e. g. 550 nm). This relationship is applied to atmospherically corrected ocean color satellite data to retrieve SPM concentrations in the Yangtze River plume. Results show that ocean color satellite data can be used to study the seasonal dynamics of SPM and better understand the role played by the main physical processes involved (river discharge, tidal cycles, wind and regional circulation).
Located in Library / RBINS Staff Publications
Inproceedings Reference Use of the near infrared similarity reflectance spectrum for the quality control of remote sensing data
The shape of water-leaving reflectance spectra in the near infrared range 700-900nm is almost invariant for turbid waters and has been analysed and tabulated as a similarity spectrum by normalisation at 780nm. This similarity spectrum is used here for the quality control of seaborne reflectance measurements and for the improvement of sky glint correction. Estimates of the reflectance measurement error associated with imperfect sky glint correction from two different wavelength pairs are shown to be nearly identical. A demonstration of residual reflectance correction for data collected in cloudy, high wave conditions has shown that this correction removes a large source of variability associated with temporal variation of the wave field. The error estimate applied here to seaborne measurements has wide-ranging generality and is appropriate for any water-leaving reflectance spectra derived from seaborne, airborne or satellite borne sensors provided suitable near infrared bands are available.
Located in Library / RBINS Staff Publications
Inproceedings Reference Use of the near infrared similarity reflectance spectrum for the quality control of remote sensing data
The shape of water-leaving reflectance spectra in the near infrared range 700-900nm is almost invariant for turbid waters and has been analysed and tabulated as a similarity spectrum by normalisation at 780nm. This similarity spectrum is used here for the quality control of seaborne reflectance measurements and for the improvement of sky glint correction. Estimates of the reflectance measurement error associated with imperfect sky glint correction from two different wavelength pairs are shown to be nearly identical. A demonstration of residual reflectance correction for data collected in cloudy, high wave conditions has shown that this correction removes a large source of variability associated with temporal variation of the wave field. The error estimate applied here to seaborne measurements has wide-ranging generality and is appropriate for any water-leaving reflectance spectra derived from seaborne, airborne or satellite borne sensors provided suitable near infrared bands are available.
Located in Library / RBINS Staff Publications / Pending Duplicate Bibliography Entries
Inproceedings Reference Use of the near infrared similarity reflectance spectrum for the quality control of remote sensing data
The shape of water-leaving reflectance spectra in the near infrared range 700-900nm is almost invariant for turbid waters and has been analysed and tabulated as a similarity spectrum by normalisation at 780nm. This similarity spectrum is used here for the quality control of seaborne reflectance measurements and for the improvement of sky glint correction. Estimates of the reflectance measurement error associated with imperfect sky glint correction from two different wavelength pairs are shown to be nearly identical. A demonstration of residual reflectance correction for data collected in cloudy, high wave conditions has shown that this correction removes a large source of variability associated with temporal variation of the wave field. The error estimate applied here to seaborne measurements has wide-ranging generality and is appropriate for any water-leaving reflectance spectra derived from seaborne, airborne or satellite borne sensors provided suitable near infrared bands are available.
Located in Library / RBINS Staff Publications / Pending Duplicate Bibliography Entries