Skip to content. | Skip to navigation

Personal tools

You are here: Home
2177 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference The GEPATAR project: GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium
Belgium is well-known for its diverse collection of built heritage, visited every year by millions of people. Because of its cultural and economic importance, conservation is a priority at both federal and regional levels. Monuments may suffer from structural instabilities related to industrial and urban development, such as groundwater extraction, mining and excavation activities. Adequate protection and preservation requires an integrated analysis of environmental, architectural and historical parameters. The aim of the GEPATAR project is to create an online interactive geo-information tool that integrates information about Belgian heritage buildings and the occurrence of ground movements. The toolbox will allow the user to view and be informed about buildings potentially at risk due to differential ground movements and thus help improving the management of built patrimony. Countrywide deformation maps were produced by applying advanced multi-temporal InSAR techniques to time-series of SAR data. We used StaMPS (Stanford Method for Persistent Scatterers; Hooper et al. 2012) to process ERS-1/2 and Envisat archive data and MSBAS (Multidimensional Small Baseline Subsets; Samsonov & d’Oreye 2012) to combine both ascending and descending tracks of Sentinel-1. High-resolution deformation maps of selected urban centres were obtained by processing VHR SAR data (TerraSAR-X and CosmoSkyMed). Within the GEPATAR toolbox, the deformation maps are integrated with other geo-data layers such as geology, land-use, the location of built heritage and architectural data. Feature-based data fusion techniques are applied to create ground movement risk maps. The output risk maps will be regularly updated with the availability of new SAR acquisitions.
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference The GEPATAR project: GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium
Belgium is well-known for its diverse collection of built heritage, visited every year by millions of people. Because of its cultural and economic importance, conservation is a priority at both federal and regional levels. Monuments may suffer from structural instabilities related to industrial and urban development, such as groundwater extraction, mining and excavation activities. Adequate protection and preservation requires an integrated analysis of environmental, architectural and historical parameters. The aim of the GEPATAR project is to create an online interactive geo-information tool that integrates information about Belgian heritage buildings and the occurrence of ground movements. The toolbox will allow the user to view and be informed about buildings potentially at risk due to differential ground movements and thus help improving the management of built patrimony. Countrywide deformation maps spanning nearly 25 years were produced by applying advanced multi-temporal InSAR techniques to time-series of SAR data. We used StaMPS (Stanford Method for Persistent Scatterers; Hooper et al. 2012) to process ERS-1/2 and Envisat archive data and MSBAS (Multidimensional Small Baseline Subsets; Samsonov & d’Oreye 2012) to combine both ascending and descending tracks of Sentinel-1. High-resolution deformation maps of selected urban centres were obtained by processing VHR SAR data (TerraSAR-X and CosmoSkyMed). Within the GEPATAR toolbox, the country-scale deformation maps are integrated with other geo-data layers such as geology, land-use and the location of the built heritage; feature-based data fusion techniques and decision rules based on geomechanical expertise are combined to create ground movement risk maps. At the local scale the fusion process is more complicated due to the inclusion of non-spatial datasets, such as photographic and historical surveys, architectural and geotechnical data; at this scale decision rules are provided by engineering and architectural expertise. The output risk maps will be regularly updated with the availability of new SAR acquisitions. Some selected case-studies will be investigated at high resolution by means of on-site monitoring techniques as well as stability analysis to evaluate the applied approaches.
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference The GEPATAR project: GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium
Belgium is well-known for its diverse collection of built heritage, visited every year by millions of people. Because of its cultural and economic importance, conservation is a priority at both federal and regional levels. Monuments may suffer from structural instabilities related to industrial and urban development, such as groundwater extraction, mining and excavation activities. Adequate protection and preservation requires an integrated analysis of environmental, architectural and historical parameters. The aim of the GEPATAR project is to create an online interactive geo-information tool that integrates information about Belgian heritage buildings and the occurrence of ground movements. The toolbox will allow the user to view and be informed about buildings potentially at risk due to differential ground movements and thus help improving the management of built patrimony. Countrywide deformation maps spanning nearly 25 years were produced by applying advanced multi-temporal InSAR techniques to time-series of SAR data. We used StaMPS (Stanford Method for Persistent Scatterers; Hooper et al. 2012) to process ERS-1/2 and Envisat archive data and MSBAS (Multidimensional Small Baseline Subsets; Samsonov & d’Oreye 2012) to combine both ascending and descending tracks of Sentinel-1. High-resolution deformation maps of selected urban centres were obtained by processing VHR SAR data (TerraSAR-X and CosmoSkyMed). Within the GEPATAR toolbox, the country-scale deformation maps are integrated with other geo-data layers such as geology, land-use and the location of the built heritage; feature-based data fusion techniques and decision rules based on geomechanical expertise are combined to create ground movement risk maps. At the local scale the fusion process is more complicated due to the inclusion of non-spatial datasets, such as photographic and historical surveys, architectural and geotechnical data; at this scale decision rules are provided by engineering and architectural expertise. The output risk maps will be regularly updated with the availability of new SAR acquisitions. Some selected case-studies will be investigated at high resolution by means of on-site monitoring techniques as well as stability analysis to evaluate the applied approaches.
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference C source code The groundwater oligochaetes (Annnelida, Clitellata) from the "Parc du Mercantour" (France)
Located in Library / RBINS Staff Publications
Inproceedings Reference The H3O-project: towards sustainable use and management of the Flemish-Dutch subsurface
Located in Library / RBINS Staff Publications
Article Reference The HabitAnt Project – Past and future habitability in Antarctic lakes
The rising temperatures associated with climate change could lead to increased ice melt on the Antarctic continent, causing the expansion of ice-free areas. With the decreasing distance between these areas, connectivity increases, which could have a significant impact on Antarctic ecosystems. Antarctic biota are characterized by high levels of endemism, likely as a result of their isolation and long-term evolution in glacial refugia. The combination of higher connectivity and a milder climate could enhance the establishment of invasive species and increase competition, which eventually could lead to the loss of endemic species and biotic homogenization. The HabitAnt project aims to assess how Antarctic freshwater systems could evolve under different climate change scenarios by studying the past and present habitability of lakes and their catchments. To achieve these goals, dated lake sediment cores from the Larsemann Hills, Syowa Oasis and Schirmacher Oasis will be analysed. Ancient DNA will be extracted from the cores and a metabarcoding approach will be used to assess biological succession over time and in response to environmental changes. We have already redesigned metabarcoding primers for the invertebrate taxa Copepoda, Cladocera, Rotifera, Ostracoda and Tardigrada. Furthermore, for one core of the Schirmacher Oasis, 18S rRNA and fossil pigment data are already available. Metabarcoding data will be complemented with microfossil analyses, and time-calibrated phylogenies will be constructed from the obtained aDNA sequencing reads. In addition, recent lake sediment samples will be analysed to assess the present-day community structure of freshwater biota in different lakes. The obtained datasets will allow us to determine locations of glacial refugia and to study processes such as colonization, long-term persistence in glacial refugia, diversification and extinction. We will also model optima and tolerances for several important environmental factors, enabling us to predict how freshwater biota might respond to future environmental changes.
Located in Library / RBINS Staff Publications 2023
Inproceedings Reference The Hangenberg Event (uppermost Famennian) in southern Belgium (Namur-Dinant Basin)
Located in Library / RBINS Staff Publications
Article Reference The hazards of oil exploitation in Africa's ancient lakes
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference The Holocene palaeolake of Tayma – A key site for unravelling palaeoclimate, with implications for Neolithic incursions and “oasisation” on the northern Arabian Peninsula
Located in Library / RBINS Staff Publications 2021
Misc Reference The IBISCA database
Located in Library / RBINS Staff Publications