Skip to content. | Skip to navigation

Personal tools

You are here: Home
1495 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Viroinval/Treignes : campagne de fouilles 2020 à la grotte Genvier.
Imprimé avril 2022, AWaP
Located in Library / RBINS Staff Publications 2021
Article Reference Mons/Nouvelles : les décors en pierre de la villa de la Grande Boussue.
Located in Library / RBINS Staff Publications 2022
Article Reference Comparative Anatomy of Mandibular Neurovascular Canals in Modern Human and Great Apes: A Pilot Study With Cone Beam Computed Tomography
The aim of the present study was to compare mandibular neurovascular canal anatomy in human and great apes by using cone beam computed tomography (CBCT). The anatomical variability of mandibular neurovascular canals (mandibular, incisive and lingual canals) of 129 modern humans and great apes (Homo, Pan and Gorilla) were analyzed by linear measurements on CBCT images. The Kruskal-Wallis non-parametric test and Dunn’s all pairs for joint ranks were applied to compare the variability of mandibular canals among these groups. Human, Chimpanzee and Gorilla groups showed significant differences in the dimensions of the mandibular canal, mental foramen, incisive canal, lingual canal and anterior mandibular bone width. Bifid mandibular canals and anterior loops were the anatomical variations most frequently observed in the Gorilla. Humans had a larger mental foramen and a distinctive incisive canal. The latter could not be identified in the Gorilla group. The variability in the anatomy within mandibles of human and non-human primates, shows different forms in the neurovascular structures. In comparison to the mandible of great apes, the incisive canal is suggested to be a feature unique to the human mandible.
Located in Library / RBINS Staff Publications 2018
Article Reference Extensive diversity and disparity of the early Miocene platanistoids (Cetacea, Odontoceti) in the southeastern Pacific (Chilcatay Formation, Peru)
Located in Library / RBINS Staff Publications 2020
Article Reference Taxonomy of the heavily exploited Indo-Pacific sandfish complex (Echinodermata: Holothuriidae)
Two commercially valuable holothurians, the sandfish and golden sandfish, vary in colour and have a confused taxonomy, lending uncertainty to species identifications. A recent molecular study showed that the putative variety Holothuria (Metriatyla) scabra var. versicolor Conand, 1986 (‘golden sandfish’) is a distinct species from, but could hybridize with, H. (Metriatyla) scabra Jaeger, 1833 (’sandfish’). Examination of the skeletal elements and external morphology of these species corroborates these findings. The identity of H. (M.) scabra is unambiguously defined through the erection and description of a neotype, and several synonyms have been critically re-examined. The nomenclaturally rejected taxon H. (Metriatyla) timama Lesson, 1830 and H. (M.) scabra var. versicolor (a nomen nudum) are herein recognized as conspecific and are allocated to a new species, Holothuria lessoni sp. nov., for which type specimens are described. The holotype and only known specimen of H. aculeata Semper, 1867, has been found and is redescribed. It is considered to be a valid species. Taxonomic clarification of this heavily exploited species complex should aid its conservation and permit species-specific management of their fisheries.
Located in Library / RBINS Staff Publications
Inproceedings Reference One Year of Taxonomic Capacity Building by the Belgian Focal Point to the GTI
see pdf
Located in Library / RBINS Staff Publications
Article Reference New Holothuria species from Australia (Echinodermata: Holothuriidae), with comments on the origin of deep and cool holothuriids.
Two aspidochirotid species, new to science, from the continental slope of southern Australia are described: Holothuria (Panningothuria) austrinabassa O’Loughlin sp. nov. and Holothuria (Halodeima) nigralutea O’Loughlin sp. nov. The first represents the southernmost documented holothuriid, and is the sister species of the northernmost holothuriid species Holothuria (Panningothuria) forskali Delle Chiaje. The second is a very recent offshoot of the wide-ranging Indo- west Pacific Holothuria (Halodeima) edulis Lesson. Morphological and molecular genetic differences between these species pairs are detailed. Holothuria (Halodeima) signata Ludwig is raised out of synonymy with H. edulis.A lectotype for Holothuria (Halodeima) signata Ludwig is designated, The status of the subgenera Panningothuria Rowe and Halodeima Pearson is discussed. The occurrence of multiple madreporites in Halodeima is discussed.
Located in Library / RBINS Staff Publications
Article Reference Using Sea cucumbers to illustrate the basics of zoological nomenclature
Located in Library / RBINS Staff Publications
Article Reference no Name, No Game
No abstract
Located in Library / RBINS Staff Publications
Article Reference Algal Taxonomy: a road to nowhere?
The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy should preferably come out of an international working group that includes the various databases as well as the various phycological societies. In this strategy, phycologists should link up to major international initiatives that are currently being developed, such as the compulsory registration of taxonomic and nomenclatural acts and the introduction of Life Science Identifiers.
Located in Library / RBINS Staff Publications