Skip to content. | Skip to navigation

Personal tools

You are here: Home
2922 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference 13th International Symposium on Aquatic Oligochaeta, Brno, Czech Republic, 7–11 September, 2015
Located in Library / RBINS Staff Publications 2016
Article Reference Comparative phylogeographies of six species of hinged terrapins (<i>Pelusios</i> spp.) reveal discordant patterns and unexpected differentiation in the <i>P. castaneus/P. chapini</i> complex and <i>P. rhodesianus</i>
Located in Library / RBINS Staff Publications 2016
Article Reference Magura Cave, Bulgaria: A multidisciplinary study of Late Pleistocene human palaeoenvironment in the Balkans
Abstract Two trenches excavated at Magura Cave, north-west Bulgaria, have provided Late Pleistocene lithic artefacts as well as environmental evidence in the form of large and small mammals, herpetofauna and pollen recovered from Crocuta coprolites. One of the trenches also has a visible tephra layer which has been confirmed as representing the major Campanian Ignimbrite eruption and is accurately dated at the source area to 39,280 ± 55 yrs and radiocarbon determinations have added to chronological resolution at the site. The palaeoenvironment of the region during the Late Pleistocene is discussed in the context of hominin presence and shows a mosaic landscape in a region considered a crucial refugium for both plants and mammals, including hominins.
Located in Library / RBINS Staff Publications 2016
Article Reference Charred olive stones: experimental and archaeological evidence for recognizing olive processing residues used as fuel
After extracting oil from olives a residue is left usually referred to as the olive oil processing residue (OPR). This study explores the way in which ancient societies may have used OPR as fuel for fires to generate heat and the various issues that are related to the residues of this fuel. After drying, the high heating value and structure of OPR makes it an excellent and efficient fuel. Upgrading OPR further, through thermal conversion or charring, provides an even more efficient fuel (COPR), with a hotter and smoke free flame, a higher heating value and which is lighter in mass and thus easier to transport. After a fire is extinguished two types of remains of the fuel are left i.e. char and ash. Analyses on both remains, recovered from archaeological deposits, could be used as a source of information on fuel utilization. Laboratory experiments on charred modern OPR and stones show that by measuring their reflectance and analyzing their structure under reflected light microscopy, OPR and COPR can be distinguished in the charred material recovered from three archaeological sites in Greece and Syria. Based on these investigations it is suggested that on the three sites COPR was used as fuel. Ash, sampled together with the char, provides the possibility of investigating if other types of fuel were used, apart from OPR or COPR. On the investigated sites no ash was collected, but the analysis of the modern OPR showed that the properties of its ash could be used to distinguish it from other types of fuel. Ash from modern OPR and olive stones showed the presence of phytoliths. The often discussed issue related to the sharpness and smoothness of the edges of charred fragmented olive stones was investigated. The results showed that this is not a reliable criterion for recognizing olive oil production. It is recommended that in addition to the identification of the botanical material more properties of the remains of fuels should be analysed. To prevent destroying and losing char and ash as a result of excavation activities such as flotation and sieving, special measures have to be taken. The results show that analysing char and ash may provide valuable information on the (pyro)technology practised in ancient societies.
Located in Library / RBINS Staff Publications 2016
Article Reference Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen
This study provides a refined view on the diet and ecological niche of Neanderthals. The traditional view is that Neanderthals obtained most of their dietary protein from terrestrial animals, especially from large herbivores that roamed the open landscapes. Evidence based on the conventional carbon and nitrogen isotopic composition of bulk collagen has supported this view, although recent findings based on plant remains in the tooth calculus, microwear analyses, and small game and marine animal remains from archaeological sites have raised some questions regarding this assumption. However, the lack of a protein source other than meat in the Neanderthal diet may be due to methodological difficulties in defining the isotopic composition of plants. Based on the nitrogen isotopic composition of glutamic acid and phenylalanine in collagen for Neanderthals from Spy Cave (Belgium), we show that i) there was an inter-individual dietary heterogeneity even within one archaeological site that has not been evident in bulk collagen isotopic compositions, ii) they occupied an ecological niche different from those of hyenas, and iii) they could rely on plants for up to ∼20\% of their protein source. These results are consistent with the evidence found of plant consumption by the Spy Neanderthals, suggesting a broader subsistence strategy than previously considered.
Located in Library / RBINS Staff Publications 2016
Article Reference Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe–Ankole belt, Central Africa
The vein-type tungsten deposit at Nyakabingo in the central Tungsten belt of Rwanda is located in the eastern flank of the complex Bumbogo anticlinal structure. The host rock is composed of alternating sequences of sandstones, quartzites, and black pyritiferous metapelitic rocks. Two types of W-mineralized quartz veins have been observed: bedding-parallel and quartz veins that are at high angle to the bedding, which are termed crosscutting veins. Both vein types have been interpreted to have been formed in a late stage of a compressional deformation event. Both vein types are associated with small alteration zones, comprising silicification, tourmalinization, and muscovitization. Dating of muscovite crystals at the border of the veins resulted in a maximum age of 992.4 ± 1.5 Ma. This age is within error similar to the ages obtained for the specialized G4 granites (i.e., 986 ± 10 Ma). The W-bearing minerals formed during two different phases. The first phase is characterized by scheelite and massive wolframite, while the second phase is formed by ferberite pseudomorphs after scheelite. These minerals occur late in the evolution of the massive quartz veins, sometimes even in fractures that crosscut the veins. The ore minerals precipitated from a H2O–CO2–CH4–N2–NaCl–(KCl) fluid with low to moderate salinity (0.6–13.8 eq. wt% NaCl), and minimal trapping temperatures between 247 and 344 °C. The quartz veins have been crosscut by sulfide-rich veins. Based on the similar setting, mineralogy, stable isotope, and fluid composition, it is considered that both types of W-mineralized quartz veins formed during the same mineralizing event. Given the overlap in age between the G4 granites and the mineralized quartz veins, and the typical association of the W deposits in Rwanda, but also worldwide, with granite intrusions, W originated from the geochemically specialized G4 granites. Intense water–rock interaction and mixing with metamorphic fluids largely overprinted the original magmatic-hydrothermal signature.
Located in Library / RBINS Staff Publications 2016
Article Reference Neandertal cannibalism and Neandertal bones used as tools in Northern Europe
Almost 150 years after the first identification of Neandertal skeletal material, the cognitive and symbolic abilities of these populations remain a subject of intense debate. We present 99 new Neandertal remains from the Troisième caverne of Goyet (Belgium) dated to 40,500–45,500 calBP. The remains were identified through a multidisciplinary study that combines morphometrics, taphonomy, stable isotopes, radiocarbon dating and genetic analyses. The Goyet Neandertal bones show distinctive anthropogenic modifications, which provides clear evidence for butchery activities as well as four bones having been used for retouching stone tools. In addition to being the first site to have yielded multiple Neandertal bones used as retouchers, Goyet not only provides the first unambiguous evidence of Neandertal cannibalism in Northern Europe, but also highlights considerable diversity in mortuary behaviour among the region’s late Neandertal population in the period immediately preceding their disappearance.
Located in Library / RBINS Staff Publications 2016
Article Reference Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe
Located in Library / RBINS Staff Publications 2016
Article Reference Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe
How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [ 1, 2 ]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [ 3–5 ]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [ 6–9 ]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [ 3–5, 8, 9 ]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.
Located in Library / RBINS Staff Publications 2016
Article Reference New carnivoraforms from the Latest Paleocene of Europe and their bearing on the origin and radiation of Carnivoraformes (Carnivoramorpha, Mammalia)
We report the discovery of the earliest European carnivoraforms, based on two new taxa from the latest Paleocene of France and Romania. A new species of Vassacyon, V. prieuri, from the locality of Rivecourt (MP6b; Oise, France) (MP D Mammalian Paleogene reference levels) is described based on a dentary fragment and isolated teeth. This species displays several primitive features compared with species of Vassacyon known from the early Eocene of North America and Europe. A second Paleocene carnivoraform, cf. Gracilocyon sp., is described based on fragmentary specimens from the locality of Jibou (MP6b; Transylvania, Romania). Carnivoraformes were previously unknown in Europe before the Eocene, and Vassacyon prieuri and cf. Gracilocyon sp. are their oldest records in Europe. These discoveries favor the hypothesis of a dispersal of these two genera from Europe to North America during the Paleocene-Eocene Thermal Maximum. Vassacyon prieuri and cf. Gracilocyon sp. strengthen support for the level MP6b and its correlation with the Clarkforkian. The geographic origin of the Carnivoraformes remains unknown. However, based on the observed biochronological and geographic distributions of the carnivoraforms, we infer a possible Asian origin for this group. In this scenario, Gracilocyon and Vassacyon dispersed to Europe during the Clarkforkian MP6b time, probably together with rodent taxa, whereas Uintacyon dispersed from Asia to North America shortly after rodents and tillodonts
Located in Library / RBINS Staff Publications 2016