Skip to content. | Skip to navigation

Personal tools

You are here: Home
2177 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference CO2-enhanced oil recovery in the North Sea region and its importance for Belgium
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference Measuring the amount of CO2 in oversaturated waters by mass balance: an overview of trials and errors
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference Board games as scientific communication tools for black-box methodologies: the principles of the geo-techno-economic PSS III simulator translated into an interactive educational game
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference Cartography of the Belgian monuments at risk via PSI analysis of the ground movements, the GEPATAR project
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference audio/x-realaudio Time-series analysis of SAR images for detecting ground subsidence in the Scheldt estuary
Located in Library / RBINS Staff Publications 2016
Incollection Reference chemical/x-molconn-Z Overview of the ground mouvements highlighted by the Persistent Scatterer Technique (PSI) in Belgium
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference The map of the Brabant Massif for offshore Belgium
The cartographic boundary of the Brabant Massif in the northwest is the North Sea, which is an observational limit. Nevertheless the Lower Palaeozoic rocks continue as part of a larger unit, referred to as the Anglo-Brabant Deformation Belt. Maps of the Brabant Massif largely rely on borehole data. The latest map of the Brabant Massif (Piessens et al., 2005) uses structural concepts and direct information, rather than geophysical information. Nevertheless, an aeromagnetic survey and gravimetric data corroborate the large scale distribution of the units. This map is extrapolated to the off-shore territory of Belgium. Direct information from drillings is not available for the off-shore region, and it is therefore not possible to draw this map at the same stratigraphic resolution. The formations are therefore grouped into Cambrian, Ordovician and Silurian units. Magnetic susceptibility is high for the Cambrian, which allows tracing their continuation from on-shore to off-shore. The formations at subcrop level along the central axis of the Brabant Massif are on-shore Cambrian in age, but young in a WNW direction. Also the magnetic pattern becomes less intense, likely corresponding to an increasing depth of the more magnetic lower Cambrian units. This trend continues off-shore, indicating that the Cambrian units disappears at subcrop level. Superimposed on this general trend an aeromagnetic anomaly about 15 km off-shore of Ostend marks the probable local reappearance of the Tubize Formation. A secondary and less continuous Cambrian axis passes near Diksmuide. A second isolated off-shore aeromagnetic anomaly, indicative of the Cambrian unit, lies along the trace of this secondary axis. The gravimetric map shows a low gravimetric anomaly of which the circular shape suggests a genetic link with the chain of gravimetric lows that underlie the southern part of the on-shore part of the Brabant Massif. The higher densities in the northern part of the off-shore territory confirm, in continuation of the on-shore formation boundaries, the presence of the Silurian unit. The validity of the inferred distribution of the stratigraphic units was verified with the structural 3D concept that was developed for the on-shore part of the Brabant Massif, concluding that the inferred distribution of the geological units is in agreement with the structural model derived on-shore. It for example explains the positions of the two magnetic anomalies relative to each another. A central element in the structural model is the Asquempont Detachment System of which a limited number of possible traces is possible.
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference Beyond the current limits of Raman Spectroscopy: controlling fluorescence in solid bitumen with low thermal maturity
Raman spectroscopy is an interesting tool to assess the thermal maturity of solid organic matter. For carbonaceous material with moderate to high maturities, several studies have found good correlations between Raman spectral parameters and thermal maturity, expressed as vitrinite reflectance (VR) or bitumen reflectance (BR). However, at low maturities a large part of the Raman peaks is lost under an intense background radiation, caused by fluorescence. This fluorescence problem mainly occurs at 0.4-1.0% VR (the oil window), and makes it difficult to recognize the original spectrum. In this study, Raman parameters that have been put forward in literature were tested on a low maturity, solid bitumen sample of approximately 0.61% BR. The investigated parameters include the peak’s full width at half maximum FWHM, peak position W, peak area A, area ratio AD/AG and intensity ratio ID/IG. Fluorescence in this sample is very high and covers Raman peaks. It was found that during consecutive measurements at a single location (i.e. irradiation with the Raman laser), fluorescence decreases with time and Raman peaks appear. This is in line with Quirico et al. (2005), who observed the same effect at coal measurements. An interesting observation is the behaviour of Raman parameters during ongoing irradiation. The full widths at half maximum do not change at all for every investigated peak in our spectra. Also peak positions remain the same. The peak areas do change with irradiation, and show a decrease with decreasing fluorescence. Comparison of areas under individual peaks and total spectrum area however suggests that A and fluorescence decrease at equal speeds. This is the case for most important Raman peaks at 1370 (D-band), 1600 (G-band) and 3200 cm-1, with correlation coefficients of 0.66, 0.97 and 0.92 respectively. Lastly, the area ratio AD/AG and intensity ratio ID/IG(approximation) show no trend with fluorescence, indicating that the shape of the spectrum remains the same with irradiation. This is a promising result, because it suggests that fluorescence can be controlled without changing spectral parameters. Although not all peak parameters in this study (FWHM and AD/AG) correspond to parameters from literature regarding maturity, the behaviour of the Raman peak parameters in combination with the decreasing fluorescence is an exciting outcome. If further research proves that the original parameters are not altered by irradiation, this will provide an answer to the problem of fluorescence at low maturity samples.
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference Example of natural fracture patterns in Westphalian deposits: occurence and controls
Located in Library / RBINS Staff Publications 2016
Conference Reference What if jellyfish were swimming?
Located in Library / RBINS Staff Publications 2016