Skip to content. | Skip to navigation

Personal tools

You are here: Home
1114 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference On an endemic species flock of cypridopsine ostracods (Crustacea, Ostracoda) from the ancient Lake Malawi (Africa), with the description of a new genus and three new species
We describe Malawidopsis gen. nov., a new genus of Cypridopsinae Kaufmann, 1900 from the African ancient Lake Malawi. The genus comprises at least 17 new species, which makes it a significant ostracod radiation in this lake, parallel to a similar (but independent) cypridopsine radiation in Lake Tanganyika. Three of these new species are here described: Malawidopsis stellae gen. et. sp. nov., the type species of the new genus; M. ruwaydae gen. et. sp. nov. and M. antoniae gen. et. sp. nov.. The other new species are briefly illustrated and described, but are left in open nomenclature (sp. A, B, C, etc.). Cypridopsis cunningtoni Sars, 1910 and Potamocypris fuelleborni Daday, 1910 are transferred to Malawidopsis gen. nov. and are identical to Malawidopsis spec. F and Malawidopsis spec. N, respectively. The new tribe Plesiocyprisopsini trib. nov. is erected, and comprises the cypridopsine genera previously in the Cypridopsini s.l. with the right valve overlapping the left valve, at least anteriorly. Potential drivers of speciation within this endemic clade in Lake Malawi are briefly discussed. Bathymetry might have been important, with most species being restricted to shallower depths and only four species also occurring at depths of 75 m or more, but very few specimens were retrieved from greater depths. Most species occurred on coarse sand, but this sediment category coincides with shallower stations. Overall, most species appear to have a wide geographical distribution in the lake, so no geographical parapatric speciation is apparent. The occurrence of all species in sexual populations and the significant differences in the male sexual organs and the valves suggest that sexual selection might have been the most important driver in the speciation process of this species flock, but this should be further explored. Following deep coring results in Lake Malawi, the present clade could be (at least) c one million years old.
Located in Library / RBINS Staff Publications 2022
Article Reference Describing novel mitochondrial genomes of Antarctic amphipods
To date, only one mitogenome from an Antarctic amphipod has been published. Here, novel complete mitochondrial genomes (mitogenomes) of two morphospecies are assembled, namely, Charcotia amundseni and Eusirus giganteus. For the latter species, we have assembled two mitogenomes from different genetic clades of this species. The lengths of Eusirus and Charcotia mitogenomes range from 15,534 to 15,619 base pairs and their mitogenomes are composed of 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and 1 putative control region CR. Some tRNAs display aberrant structures suggesting that minimalization is also ongoing in amphipod mitogenomes. The novel mitogenomes of the two Antarctic species have features distinguishing them from other amphipod mitogenomes such as a lower AT-richness in the whole mitogenomes and a negative GC- skew in both strands of protein coding genes. The genetically most variable mitochondrial regions of amphipods are nad6 and atp8, while cox1 shows low nucleotide diversity among closely and more distantly related species. In comparison to the pancrustacean mitochondrial ground pattern, E. giganteus shows a translocation of the nad1 gene, while cytb and nad6 genes are translocated in C. amundseni. Phylogenetic analysis based on mitogenomes illustrates that Eusirus and Charcotia cluster together with other species belonging to the same amphipod superfamilies. In the absence of reference nuclear genomes, mitogenomes can be useful to develop markers for studying population genetics or evolutionary relationships at higher taxonomic levels.
Located in Library / RBINS Staff Publications 2022
Article Reference Dispersal model alert on the risks of alien species introduction by ballast waters in protected areas from the Western Antarctic Peninsula
Aim The Western Antarctic Peninsula is challenged by climate change and increasing maritime traffic that together facilitate the introduction of marine non-native species from warmer regions neighbouring the Southern Ocean. Ballast water exchange has been frequently reported as an introduction vector. This study uses a Lagrangian approach to model the passive drift of virtual propagules departing from Ballast water hypothetic exchange zones, at contrasting distances from the coasts. Location Western Antarctic Peninsula. Methods Virtual propagules were released over the 2008–2016 period and at three distances from the nearest coasts: 200 (convention for the management of Ballast Water, 2004), 50 or 11 nautical miles (NM). Results Results show that exchanging Ballast water at 200 NM considerably reduces the arrival of propagules in proposed marine protected areas of the western side of the Antarctic Peninsula. On the eastern side, propagules can reach north-eastern marine protected areas within a few days due to strong currents for all tested scenarios. Seasonal and yearly variations indicate that exceptional climate events could influence the trajectory of particles in the region. Ballast water should be exchanged at least 200 NM offshore on the western side of the Antarctic Peninsula and avoided on the eastern side to limit particle arrival in proposed marine protected areas. Focusing on Deception Island, our results suggested that the Patagonian crab (Halicarcinus planatus) observed in 2010 could have been introduced in case of Ballast water exchange at 50 NM or less from the coast. Main conclusions This study highlights the importance of respecting Ballast water exchange convention to limit the risk of non-native species introduction. Ballast water exchange should be operated at least at 200 NM from the coasts, which further limits particle arrival in shallow water areas. This is especially important in the context of a more visited and warmer Southern Ocean.
Located in Library / RBINS Staff Publications 2022
Webpublished Reference Walvissen uit het Waasland
Located in Library / RBINS Staff Publications
Techreport Reference Turbine size impacts the number of seabird collisions per installed megawatt and offers possibilities for mitigation.
As the offshore wind energy technology is rapidly progressing and because wind turbines at sea have a relatively short life span, repowering scenarios are already being discussed for the oldest wind farms. Ongoing developments result in larger wind turbines and an increased open airspace between turbines. Despite taller towers having larger rotor swept zones and therefore a higher collision risk area compared to smaller-sized turbines, there is increasing evidence that fewer but larger, more power-efficient turbines may have a lower collision rate per installed megawatt. As such, turbine size can offer an opportunity to mitigate seabird fatalities by increasing the clearance below the lower rotor tip. We assessed the seabird collision risk for a hypothetical repowering scenario of the first offshore wind farm zone in Belgian waters with larger turbines and the effect of an additional increase in hub height on that theoretical collision risk. For all species included in this exercise, the estimated collision risk decreased in a repowering scenario with 15 MW turbines (40.4% reduction on average) because of higher clearance between the lower tip of the turbine rotor and the sea level, and the need for a lower number of turbines per km². Increasing the hub height of those 15 MW turbines with 10 m, further decreases the expected number of seabird collisions with another 37% on average. However, terrestrial birds and bats also migrate at sea and the effect of larger turbines on these taxa is less clear. Possibly even more terrestrial birds and bats are at risk of collision compared to the current turbines. So, while larger turbines and increasing the hub height can be beneficial for seabirds, this likely needs to be applied in combination with curtailment strategies, which stop the turbines during heavy migration events, to reduce the impact on other species groups.
Located in Library / RBINS Staff Publications 2022
Booklet Reference Livret-guide de l’excursion géologique dans la vallée du Hoyoux (Belgique) pour les membres de la Société Géologique du Nord. Institut royal des Sciences naturelles de Belgique, Bruxelles, 22 p.
Located in Library / RBINS Staff Publications
Article Reference Two new atrypid brachiopod species from the late Frasnian of Belgium
Located in Library / RBINS Staff Publications
Article Reference The genus Biernatella Baliński, 1977 (Brachiopoda) from the late Frasnian of Belgium
Located in Library / RBINS Staff Publications
Article Reference The genus Iowatrypa Copper, 1973 (Brachiopoda) in the Les Valisettes Formation (late Frasnian of the Philippeville Anticlinorium, southern Belgium)
Located in Library / RBINS Staff Publications
Article Reference Revision of the brachiopod Cyrtina rigauxi Maillieux, 1909 and description of a new ambocoeliid genus (Dionacoelia n. gen.) from the Frasnian of southern Belgium
Located in Library / RBINS Staff Publications