-
Holarctic genetic structure and range dynamics in the woolly mammoth
-
Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr).We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32–34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia fromAmerica around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20–15 kyr BP, when a severe population size decline occurred.
Located in
Library
/
RBINS Staff Publications
-
Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs
-
The geographic and temporal origins of the domestic dog remain controversial, as genetic data suggest a domestication process in East Asia beginning 15,000 years ago, whereas the oldest doglike fossils are found in Europe and Siberia and date to >30,000 years ago. We analyzed the mitochondrial genomes of 18 prehistoric canids from Eurasia and the New World, along with a comprehensive panel of modern dogs and wolves. Themitochondrial genomes of all modern dogs are phylogeneticallymost closely related to either ancient or modern canids of Europe. Molecular dating suggests an onset of domestication there 18,800 to 32,100 years ago. These findings imply that domestic dogs are the culmination of a process that initiated with European hunter-gatherers and the canids with whom they interacted.
Located in
Library
/
RBINS Staff Publications
-
Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex
-
Cave bears are among the most well known extinct Pleistocene mammals. Their biogeography and taxonomy, along with the factors that led to their extinction, have been subject to long-standing controversy. Here, we reconstruct the phylogeography as well as the temporal and spatial population dynamics of cave bears across their range using mitochondrial DNA control region sequences from 77 published as well as 65 new cave bear samples, Our analyses reveal a dramatic loss of genetic diversity in cave bear populations after 30,000 years before present and provide evidence for a range decline from east to west towards the onset of the last glacial maximum. Our results also suggest that the three major haplogroups within cave bears, which may correspond to distinct species, were previously more widespread, with relict populations in remote and alpine areas still harbouring haplotypes that have disappeared from most of their previous range. Applying a phylogenetic dating approach, we estimated the age of the oldest of our samples, originating from the Yana River region in north-eastern Siberia, to be around 178,000 years, which confirms a previous estimate of a Middle Pleistocene age based on its stratigraphic position. Our results extend our knowledge about the evolutionary history of cave bears, but they also show that to unravel the complexities of cave bear evolution future ancient DNA studies on this Pleistocene species will need to go beyond short mitochondrial DNA fragments, including full mitochondrial genomes as well as nuclear DNA sequences.
Located in
Library
/
RBINS Staff Publications
-
The First Upper Paleolithic Human Remains from Belgium: Aurignacian, Gravettian, and Magdalenian Fossils at the “Troisième caverne” of Goyet
-
There is ample evidence of human occupation across Northern Europe throughout various periods of the Upper Paleolithic. However, the biological characteristics of the Northern European Upper Paleolithic humans and their mortuary practices remain largely unknown because of a dearth of human fossils. In Belgium, although the presence of humans has been verified at multiple archeological sites, no Upper Paleolithic fossil has yet been identified. In this context, the recent discovery of Upper Paleolithic human remains at Goyet (Belgium) fills in an important chronological gap. The “Troisième caverne” of Goyet, excavated at the end of the 19th and early 20th century, yielded a rich archeological sequence ranging from the Middle and Upper Paleolithic to historical times. In 2008, we began documenting the Paleolithic occupations of the “Troisième caverne” by reassessing the collections from the site which heretofore had only been partially studied. The updated inventory of human remains was accomplished by conducting a detailed sorting of the paleontological collections in order to identify human remains that may have been overlooked thus far. As a result, the collections from the “Troisième caverne” now include nearly 200 human bones/bone fragments and isolated teeth that correspond to various materials from different periods. The morphometric study of the human specimens from Goyet, completed by direct radiocarbon dating and stable isotope analysis, shows that they represent two main samples—a series of Late Neandertal remains (Rougier et al. 2012) and a set of modern human specimens from three periods of the Upper Paleolithic, namely the Aurignacian, Gravettian, and Magdalenian. The latter include fragmentary elements from the cranial and infracranial skeleton. Interestingly, those from the Gravettian and Magdalenian present anthropogenic traces and ochre traces. We will discuss the importance of these new fossils in the context of the human population of Northern Europe during the Upper Paleolithic.
Located in
Library
/
RBINS Staff Publications
-
Mandibles from Palaeolithic dogs and Pleistocene wolves at Předmostí, the Czech Republic
-
Located in
Library
/
RBINS Staff Publications
-
Isotopic evidence for dietary ecology of cave lion (Panthera (leo) spelaea) in North-Western Europe: prey choice, competition and implications for extinction
-
The prey choice of extinct cave lions Panthera spelaea was determined using bone collagen isotopic signatures in the Belgian Ardennes and the Swabian Jura between 40,000 and 25,000 years ago as well as in the Late-glacial of the northwestern Alp foreland and of the Paris Basin. More than 370 specimens of large carnivorous and herbivorous mammals from 25 sites coeval with cave lion were analyzed. The isotopic results point to an individualistic prey choice for cave lions, with some individuals more oriented on reindeer and others on young cave bears. The isotopic signatures and therefore dietary choice of cave lions did not overlap with those of cave hyenas, indicating competitive exclusion between the large predators. The most recent western European cave lions seem to have been consuming mainly reindeer until the local extirpation of this prey species, which coincides chronologically with their own extinction. This restricted prey choice may be involved in the extinction of this large predator in Western Europe.
Located in
Library
/
RBINS Staff Publications
-
Cave bear (Ursus spelaeus) from Chamber B of the Goyet Cave in Belgium
-
Located in
Library
/
RBINS Staff Publications
-
Le chien, un ami de 32000 ans
-
Located in
Library
/
RBINS Staff Publications
-
Virtual biomechanical analysis of the lower limbs of a Neandertal
-
Located in
Library
/
RBINS Staff Publications
-
The Earliest Bats from Europe
-
Chiroptera is one of the few modern mammal orders for which no fossil record has been associated with the Paleocene-Eocene Thermal Maximum that happened 55.8 million years ago. With the exception of complete skeletons from the early Middle Eocene of the Messel Formation in Germany and the late Early Eocene Green River Formation in Wyoming, all early bats are only represented by isolated elements, mainly teeth and fragmentary jaws, making the diversity and taxonomic affinities more difficult to establish. Here we revise all of the Early Eocene bats from Europe based on dental features, including digitally reconstructed teeth using micro-CT scanning technology of some complete skeletons. The diversity of European early bats is composed of the families Onychonycteridae, Icaronycteridae, Archaeonycteridae, Palaeochiropterygidae, and some of undetermined affinities. Dental features and synapomorphies of each family are characterized for the first time. The earliest bats are dated from the early Early Eocene and are all of small size with lower molars less than 1.3 mm in length. They are represented by: Eppsinycteris anglica from Abbey Wood, east London, England, an onychonycterid with reduced lower p4 and long molars; Archaeonycteris? praecursor from Silveirinha, Portugal, an archaeonycterid with long postcristid on wide lower molars; a new archaeonycterid genus and species from Meudon, North France with long trigonid and shorter postcristid on wide lower molars. These results indicate that the diversity of European Early Eocene bats is higher than previously recognized and that diversification began early in the Early Eocene.
Located in
Library
/
RBINS Staff Publications