Skip to content. | Skip to navigation

Personal tools

You are here: Home
4718 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference New species and genera of Muricidae (Mollusca: Gastropoda) from New Zealand
Located in Library / RBINS Staff Publications 2022 OA
Article Reference CO2-enhanced oil recovery and CO2 capture and storage: An environmental economic trade-off analysis
CO2 enhanced oil recovery can play a significant role in stimulating carbon capture and storage because of additional oil revenues generated. However, it also leads to additional greenhouse gas emissions. We estimate the global warming potential of different CO2 capture scenarios with and without enhanced oil recovery. During a 10 year period in which oil and electricity are produced without CO2 being captured, the global warming potential is 11 MtCO2 equivalents. We show that if CO2 is captured and used for 15 years of enhanced oil recovery, the global warming potential decreases to 3.4 MtCO2 equivalents. This level is 100% higher compared to the scenario in which the captured CO2 would be stored in an offshore aquifer instead. If the capture of CO2 is stopped when the oil reservoir is depleted, the global warming potential resulting from 10 years electricity production is 6 MtCO2 equivalents. However, if CO2 is stored in the depleted reservoir, the global warming potential is six times lower during that period. Electricity production and oil refining are the main contributors to the global warming potential. The net present value analysis indicates that for CO2 prices lower than or equal to 15 €/t and oil prices greater than or equal to 115 €/t, it is most profitable to capture CO2 for enhanced oil recovery only. Because of the low CO2 price considered, large incomes from oil production are required to stimulate CO2 capture. The environmental economic trade-off analysis shows that if CO2-enhanced oil recovery is followed by CO2 capture and storage, costs increase, but the net present value remains positive and the global warming potential is reduced. Authorities could use these outcomes to support the development of economic mechanisms for shared investments in CO2 capture installations and to mandate both oil producer and large CO2 emitting firms to store CO2 in depleted oil fields.
Located in Library / RBINS Staff Publications 2019
Article Reference Foraging recruitment in Leptothorax uniffasciatus: The influence of foraging area familiarity and the age of the nest-site
Located in Library / No RBINS Staff publications
Article Reference The Oriental lanternfly Pyrops itoi (Satô & Nagai, 1994): New synonymy and distribution records (Hemiptera: Fulgoromorpha: Fulgoridae)
Located in Library / RBINS Staff Publications 2021
Article Reference Setting the Context for Offshore Wind Development Effects on Fish and Fisheries
Changes to fisheries that result from offshore wind farm (OWF) installations may be considered good or bad depending on various stakeholders’ perspectives. OWFs can act as artificial reefs that may benefit secondary fish production, but such effects may also have ecological consequences. The fisheries exclusion effect that turns some OWFs into no-go areas, hence effectively no-take zones, could provide resource enhancements or redistribution. However, the displacement of fishing effort may have consequences to fisheries elsewhere. Changes in the sensory environment related to sound, as well as electromagnetic fields and physical alterations of current and wind wakes, may have as yet unknown impacts on fisheries resources. Understanding the interactions among effect type, OWF development phase, and spatiotemporal population dynamics of commercial and recreational species remains challenging, exemplified by the commercial fishery lobster genus Homarus in European and North American waters. While knowledge of the interactions between resource species and OWFs is improving, there remain questions on the wider interaction between and consequences of OWFs and fisheries. Studies of this wider relevance should aim to improve understanding of the economic and societal impacts of OWFs linked to ecosystem services that support fisheries. Furthermore, assisting fisheries management and providing advice requires monitoring and survey data collection at appropriate spatiotemporal scales. This information will help to determine whether OWFs have any meaningful impact on regional fisheries, and increased investments will be needed to target scientifically appropriate monitoring of OWFs and fisheries, which is supported by better integrated policy and regulation.
Located in Library / RBINS Staff Publications 2020
Techreport Reference Environmental impacts of offshore wind farms in the Belgian part of the North Sea: Emperical evidence inspiring priority monitoring, research and management
This report, targeting marine scientists, marine managers and policy makers, and offshore wind farm developers, presents an overview of the scientific findings of the Belgian offshore wind farm environmental monitoring programme (WinMon. BE), based on data collected up to and including 2019.
Located in Library / RBINS Staff Publications 2020
Article Reference Seeing yew for the forest: a call to action for improving conservation and restoration of the European yew (Taxus baccata L.),
The European yew (Taxus baccata L.) is a long-lived conifer of ecological, cultural, and historical importance across Eurasia. Despite its remarkable resilience, wide distribution, and symbolic importance, the species has experienced a long-term decline due to a complex interplay of climatic fluctuations, megafaunal extinctions, human exploitation, and insufficient regeneration. Recent studies in palaeoecology, archaeology, dendroecology, and conservation have revealed a species with greater ecological plasticity and a broader historical distribution than previously assumed. However, many fundamental questions remain unresolved, particularly regarding its biogeographical history, population dynamics, recruitment processes, and the drivers of its decline. This review stems from prior investigations of yew in the French Pyrenees and, more broadly, across Europe. These efforts led to a transdisciplinary seminar and opened a collaboration uniting >30 researchers across Eurasia. By synthesizing a wide array of data and perspectives, the article highlights key knowledge gaps and outlines emerging research priorities. These are organized thematically—past, present, and future—and include 25 questions on the species' ecological niche, life-history strategies, human interactions, genetic resilience, and conservation under global change. The article advocates for a shift towards integrative and long-term conservation strategies that embrace the historical legacies of yew populations, the general ecology of the species along with local ecological context dependence, and the urgency of future threats. By identifying pressing research needs, this review seeks to lay the foundation for new collaborative initiatives and to support evidence-based conservation of this emblematic yet understudied species.
Located in Library / RBINS Staff Publications 2025
Article Reference MesoMag: Geophysical Prospection for Mesolithic Land Use in Challenging Soil Environments
Located in Library / RBINS Staff Publications 2025
Article Reference Sedimentary ancient DNA as part of a multimethod paleoparasitology approach reveals temporal trends in human parasitic burden in the Roman period
The detection of parasite infections in past populations has classically relied on microscopic analysis of sediment samples and coprolites. In recent years, additional methods have been integrated into paleoparasitology such as enzyme-linked immunosorbent assay (ELISA) and ancient DNA (aDNA). The aim of this study was to evaluate a multimethod approach for paleoparasitology using microscopy, ELISA, and sedimentary ancient DNA (sedaDNA) with a parasite-specific targeted capture approach and high-throughput sequencing. Using 26 samples dating from c. 6400 BCE to 1500 CE that were previously analyzed with microscopy and ELISA, we aimed to more accurately detect and reconstruct parasite diversity in the Roman Empire and compare this diversity to earlier and later time periods to explore temporal changes in parasite diversity. Microscopy was found to be the most effective technique for identifying the eggs of helminths, with 8 taxa identified. ELISA was the most sensitive for detecting protozoa that cause diarrhea (notably Giardia duodenalis). Parasite DNA was recovered from 9 samples, with no parasite DNA recovered from any pre-Roman sites. Sedimentary DNA analysis identified whipworm at a site where only roundworm was visible on microscopy, and also revealed that the whipworm eggs at another site came from two different species (Trichuris trichiura and Trichuris muris). Our results show that a multimethod approach provides the most comprehensive reconstruction of parasite diversity in past populations. In the pre-Roman period, taxonomic diversity included a mixed spectrum of zoonotic parasites, together with whipworm, which is spread by ineffective sanitation. We see a marked change during the Roman and medieval periods with an increasing dominance of parasites transmitted by ineffective sanitation, especially roundworm, whipworm and protozoa that cause diarrheal illness.
Located in Library / RBINS Staff Publications 2025
Article Reference Paleoparasitological analysis of a 15th–16th c. CE latrine from the merchant quarter of Bruges, Belgium: Evidence for local and exotic parasite infections
Located in Library / RBINS Staff Publications 2025