-
Scheenstia bernissartensis (Actinopterygii: Ginglymodi) from the Early Cretaceous of Bernissart, Belgium, with an appraisal of the ginglymodians evolutionary history
-
Located in
Library
/
RBINS Staff Publications 2019
-
Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea)
-
Suspended particulate matter (SPM) concentration and particle size distribution (PSD) were assessed in a coastal turbidity maximum area (southern North Sea) during a composite period of 37 days in January–April 2008. PSDs were measured with a LISST 100X and classified using entropy analysis in terms of subtidal alongshore flow. The PSDs during tide-dominated conditions showed distinct multimodal behaviour due to flocculation, revealing that the building blocks of flocs consist of primary particles (<3 μm) and flocculi (15 μm). Flocculi comprise clusters of clay minerals, whereas primary particles have various compositions (calcite, clays). The PSDs during storms with a NE-directed alongshore subtidal current (NE storms) are typically unimodal and characterised by mainly granular material (silt, sand) resuspended from the seabed. During storms with a SW-directed alongshore subtidal current (SW storms), by contrast, mainly flocculated material can be identified in the PSDs. The findings emphasise the importance of wind-induced advection, alongshore subtidal flow and highly concentrated mud suspensions (HCMSs) as regulating mechanisms of SPM concentration, as well as other SPM characteristics (cohesiveness or composition of mixed sediment particles) and size distribution in a high-turbidity area. The direction of subtidal alongshore flow during SW storm events results in an increase in cohesive SPM concentration, HCMS formation, and the armouring of sand; by contrast, there is a decrease in cohesive SPM concentration, no HCMS formation, and an increase in sand and silt in suspension during NE storms.
Located in
Library
/
RBINS Staff Publications 2017
-
Multimodality of a particle size distribution of cohesive suspended particulate matters in a coastal zone
-
Particle size distributions (PSDs) of suspended particulate matters in a coastal zone are lognormal and multimodal in general. The multimodal PSD, which is caused by the mixing of multiple particle and aggregate size groups under flocculation and erosion/resuspension, is a record of the particle and aggregate dynamics in a coastal zone. Curve-fitting software was used to decompose the multimodal PSD into subordinate lognormal PSDs of primary particles, flocculi, microflocs, and macroflocs. The curve-fitting analysis for a time series of multimodal PSDs in the Belgian coastal zone showed the dependency of the multimodality on (1) shear-dependent flocculation in a flood and ebb tide, (2) breakage-resistant flocculation in the spring season, and (3) silt-sized particle erosion and advection in a storm surge. Also, for modeling and simulation purposes, the curve-fitting analysis and the settling flux estimation for the multimodal PSDs showed the possibility of using discrete groups of primary particles, flocculi, microflocs, and macroflocs as an approximation of a continuous multimodal PSD.
Located in
Library
/
RBINS Staff Publications
-
Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides
-
Divalent cations have been reported to develop bridges between anionic polyelectrolytes and negatively-charged colloidal particles, thereby enhancing particle flocculation. However, results from this study of kaolinite suspensions dosed with various anionic polyacrylamides (PAMs) reveal that Ca2+ and Mg2+ can lead to colloid stabilization under some conditions. To explain the opposite but coexisting processes of flocculation and stabilization with divalent cations, a conceptual flocculation model with (1) particle-binding divalent cationic bridges between PAM molecules and kaolinite particles and (2) polymer-binding divalent cationic bridges between PAM molecules is proposed. The particle-binding bridges enhanced flocculation and aggregated kaolinite particles in large, easily-settleable flocs whereas the polymer-binding bridges increased steric stabilization by developing polymer layers covering the kaolinite surface. Both the particle-binding and polymer-binding divalent cationic bridges coexist in anionic PAM- and kaolinite-containing suspensions and thus induce the counteracting processes of particle flocculation and stabilization. Therefore, anionic polyelectrolytes in divalent cation-enriched aqueous solutions can sometimes lead to the stabilization of colloidal particles due to the polymer-binding divalent cationic bridges.
Located in
Library
/
RBINS Staff Publications
-
Des champs et des bêtes à Bruxelles (Xe -XVe siècles). Approche interdisciplinaire des pratiques agricoles et alimentaires
-
Located in
Library
/
RBINS Staff Publications 2017
-
The upper Eocene-Oligocene carnivorous mammals from the Quercy Phosphorites (France) housed in Belgian collections
-
The Quercy Phosphorites Formation in France is world famous for its Eocene to Miocene faunas, especially those from the upper Eocene to lower Oligocene, the richest of all. The latter particularly helped to understand the ‘Grande Coupure’, a dramatic faunal turnover event that occurred in Europe during the Eocene-Oligocene transition. Fossils from the Quercy Phosphorites were excavated from the middle 19th century until the early 20th century in a series of sites and became subsequently dispersed over several research institutions, while often losing the temporal and geographical information in the process. In this contribution, we provide an overview and reassess the taxonomy of these barely known collections housed in three Belgian institutions: the Université de Liège, KU Leuven, and the Royal Belgian Institute of Natural Sciences. We focus our efforts on the carnivorous mammals (Hyaenodonta and Carnivoramorpha) and assess the stratigraphic intervals covered by each collection. These fossils are derived from upper Eocene (Priabonian), lower Oligocene (Rupelian), and upper Oligocene (Chattian) deposits in the Quercy area. The richness of the three collections (e.g., the presence of numerous postcranial elements in the Liège collection), the presence of types and figured specimens in the Leuven collection, and some identified localities in the RBINS collection make these collections of great interest for further studies on systematics and the evolution of mammals around the ‘Grande Coupure’.
Located in
Library
/
RBINS Staff Publications 2021
-
Review of Muricanthus Swainson, 1840 and some Recent species assigned to Hexaplex s.s. Perry, 1810, Hexaplex (Trunculariopsis) Cossmann, 1921 and Phyllonotus Swainson, 1833
-
Located in
Library
/
RBINS Staff Publications 2021
-
Catypnes marazziorum sp. nov. (Coleoptera: Cerambycidae: Prioninae) from Papua New Guinea
-
Located in
Library
/
RBINS Staff Publications 2021
-
Polydictya lanternflies of Java: New species, taxonomy and identification key (Hemiptera: Fulgoromorpha: Fulgoridae)
-
Located in
Library
/
RBINS Staff Publications 2024
-
Case 3826 – Propappus Michaelsen, 1905 and Propappidae Coates, 1986 (Annelida, Clitellata): proposed conservation by suppression of Propappus Seeley, 1888 (Vertebrata, Reptilia)
-
Located in
Library
/
RBINS Staff Publications 2021