Skip to content. | Skip to navigation

Personal tools

You are here: Home
4589 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference The transition between coastal and offshore areas in the North Sea unraveled by suspended particle composition
Identifying the mechanisms that contribute to the variability of suspended particulate matter concentrations in coastal areas is important but difficult, especially due to the complexity of physical and biogeochemical interactions involved. Our study addresses this complexity and investigates changes in the horizontal spread and composition of particles, focusing on cross-coastal gradients in the southern North Sea and the English Channel. A semi-empirical model is applied on in situ data of SPM and its organic fraction to resolve the relationship between organic and inorganic suspended particles. The derived equations are applied onto remote sensing products of SPM concentration, which provide monthly synoptic maps of particulate organic matter concentrations (here, particulate organic nitrogen) at the surface together with their labile and less reactive fractions. Comparing these fractions of particulate organic matter reveals their characteristic features along the coastal-offshore gradient, with an area of increased settling rate for particles generally observed between 5 and 30 km from the coast. We identify this area as the transition zone between coastal and offshore waters with respect to particle dynamics. Presumably, in that area, the turbulence range and particle composition favor particle settling, while hydrodynamic processes tend to transport particles of the seabed back towards the coast. Bathymetry plays an important role in controlling the range of turbulent dissipation energy values in the water column, and we observe that the transition zone in the southern North Sea is generally confined to water depths below 20 m. Seasonal variations in suspended particle dynamics are linked to biological processes enhancing particle flocculation, which do not affect the location of the transition zone. We identify the criteria that allow a transition zone and discuss the cases where it is not observed in the domain. The impact of these particle dynamics on coastal carbon storage and export is discussed.
Located in Library / RBINS Staff Publications 2024 OA
Article Reference Lessons from the calibration and sensitivity analysis of a fish larval transport model
ABSTRACT: Numerous fish populations show strong year-to-year variations in recruitment. The early life stages play a crucial role in determining recruitment and dispersal patterns. A helpful tool to understand recruitment and dispersal involves simulations with a Lagrangian transport model, which results from the coupling between a hydrodynamic model and an individual-based model. Larval transport models require sound knowledge of the biological processes governing larval dispersal, and they may be highly sensitive to the parameters selected. Various assumptions about larval traits, behaviour and other model parameters can be tested by comparing simulation results with field data to identify the most sensitive parameters and to improve model calibration. This study shows that biological parameterization is more important than inter-annual variability in explaining the year-to-year differences in larval recruitment of common sole in the North Sea and the eastern English Channel. In contrast, year-to-year variability of connectivity leads to higher variability than changes in the biological parameters. The most influential parameters are pelagic larval duration, spawning period and mortality. Calibration over a 12 yr recruitment survey shows that a scenario with low mortality associated with a long larval duration and behaviour involving nycthemeral and tidal migration best reproduces the observations. This research provides insights into factors influencing fish dispersal and recruitment, suggesting a strategy for enhancing the accuracy of models in upcoming studies. The study supports the improvement of larval dispersal modelling by incorporating an easily applicable sensitivity analysis for both calibration and validation. Incorporating sensitivity analyses enhances larval dispersal models, providing performing tools that can contribute to informed fisheries management and understanding of recruitment variability.
Located in Library / RBINS Staff Publications 2024
Article Reference Discovery-defense strategy as a mechanism of social foraging of ants in tropical rainforest canopies
Located in Library / RBINS Staff Publications 2017
Article Reference Distance–decay patterns differ between canopy and ground ant assemblages in a tropical rainforest
Located in Library / RBINS Staff Publications 2017
Article Reference Spatial and functional structure of an entire ant assemblage in a lowland Panamanian rainforest
ABSTRACT Ants are a major ecological group in tropical rainforests. Few studies in the Neotropics have documented the distribution of ants from the ground to the canopy, and none have included the understorey. A previous analysis of an intensive arthropod study in Panama, involving 11 sampling methods, showed that the factors influencing ant beta diversity (i.e., changes in assemblage composition) were, in decreasing order of importance, the vertical (height), temporal (season), and horizontal (geographic distance) dimensions. In the present study, we went one step further and aimed (1) to identify the best sampling methods to study the entire ant assemblage across the three strata, (2) to test if all strata show a similar horizontal beta diversity and (3) to analyze the functional structure of the entire ant assemblage. We identified 405 ant species from 11 subfamilies and 68 genera. Slightly more species were sampled in the canopy than on the ground; they belonged to distinct sub-assemblages. The understorey fauna was mainly a mixture of species found in the other two strata. The horizontal beta diversity between sites was similar for the three strata. About half of the ant species foraged in two (29%) or three (25%) strata. A single method, aerial flight interception traps placed alongside tree trunks, acting as arboreal pitfall traps, collected half of the species and reflected the vertical stratification. Using the functional traits approach, we observed that generalist species with mid-sized colonies were by far the most numerous (31%), followed by ground- or litter-dwelling species, either specialists (20%), or generalists (16%), and arboreal species, either generalists (19%) or territorially dominant (8%), and finally army ants (5%). Our results reinforce the idea that a proper understanding of the functioning of ant assemblages requires the inclusion of arboreal ants in survey programs.
Located in Library / RBINS Staff Publications 2017
Article Reference Inter‐specific aggression generates ant mosaics in canopies of primary tropical rainforest
Located in Library / RBINS Staff Publications 2017
Article Reference Octet Stream Rapid assessment of the three‐dimensional distribution of dominant arboreal ants in tropical forests
Located in Library / RBINS Staff Publications 2017
Article Reference Arguments (Ostracodes) pour une régression culminant à proximité de la limite Frasnien-Famennien, à Sinsin (bord sud du Bassin de Dinant)
Located in Library / RBINS Staff Publications
Article Reference Les Ostracodes du Frasnien terminal ("Kellwasser" supérieur) de Coumiac (Montagne Noire, France)
Located in Library / RBINS Staff Publications
Article Reference Les Ostracodes au passage Eifelien/Givetien à Glageon (Avesnois, France)
Located in Library / RBINS Staff Publications