-
New Geological Evidence of Past Earthquakes and Tsunami Along the Nankai Trough, Japan
-
The east coast of Japan is prone to tsunamigenic megathrust earthquakes, as tragically demonstrated in 2011 by the Tōhoku earthquake (Mw 9.0) and tsunami. The Nankai Trough subduction zone, to the southwest of the area affected by the Tōhoku disaster and facing the densely populated and heavily industrialized southern coastline of central and west Japan, is expected to generate another megathrust earthquake and tsunami in the near future. This subduction zone is, however, segmented and appears to be characterized by a variable rupture mode, involving single- as well as multi-segment ruptures, which has immediate implications for their tsunamigenic potential, and also renders the collection of sufficiently long time records of past earthquakes and tsunami in this region fundamental for an adequate hazard and risk assessment. Over the past three decades, Japanese researchers have acquired a large amount of geological evidence of past earthquakes and tsunami, in many cases extending back in time for several thousands of years. This evidence includes uplifted marine terraces, turbidites, liquefaction features, subsided marshes and tsunami deposits in coastal lakes and lowlands. Despite these efforts, current understanding of the behaviour of the subduction zone still remains limited, due to site-specific evidence creation and preservation thresholds and issues over alternative hypotheses for proposed palaeoseismic evidence and insufficiently precise chronological control. Within the QuakeRecNankai project we are generating a long and coherent time series of megathrust earthquake and tsunami recurrences along the Nankai Trough subduction zone by integrating all existing evidence with new geological records of paleo-tsunami in the Lake Hamana region and of paleo-earthquakes from selected lakes in the Mount Fuji area. We combine extensive fieldwork in coastal plain areas and lakes, with advanced sedimentological and geochemical analyses and innovative dating techniques.
Located in
Library
/
No RBINS Staff publications
-
Een GIS benadering van de bronstijdgrafheuvel in Zandig-Vlaanderen : enkele voorlopige resultaten (België)
-
Located in
Library
/
No RBINS Staff publications
-
The timing of aeolian events near archaeological settlements around Heidebos (Moervaart area, N Belgium)
-
Located in
Library
/
No RBINS Staff publications
-
Seafloor morphology and habitats of tidal channels in the Venice Lagoon, Italy tidal channel habitats. Chapter 9.
-
Located in
Library
/
RBINS Staff Publications 2020
-
Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed
-
Located in
Library
/
RBINS Staff Publications 2020
-
Ergasilid copepods in Africa: first application of next-generation sequencing and update on distribution and phylogenetic position of Ergasilus kandti, a parasite of cichlid fishes
-
Ergasilidae are a family of globally distributed copepods parasitizing freshwater fishes. Despite their widespread occurrence, their phylogeographic patterns are poorly understood, specifically in the African Great Lakes. Here, we aim to provide an update on distribution of Ergasilus kandti, a copepod species infecting Tylochromis polylepis, an endemic cichlid fish species in Lake Tanganyika, and the phylogenetic relationship of African ergasilids. We present the first record of E. kandti parasitizing the gills of T. polylepis in Lake Tanganyika proper, identified through light microscopy and, for the first time for any ergasilid, confocal laser scanning microscopy. We suggest that this technique adds spatial context to characters and are hardly visible while using light microscopy. Phylogenetic analyses based on ribosomal DNA fragments suggest two monophyletic groups of African ergasilids. However, the phylogenetic relationships of Ergasilus remain unresolved, possibly because of the insufficient resolution of these widely used phylogenetic markers and low taxonomic coverage. A comparison of ergasilid mitochondrial genomes highlights traits found in other parasite lineages including genome shrinkage and low evolutionary rates of the cox1 gene. This study presents the most extensive molecular characterization of any ergasilid species to date.
Located in
Library
/
RBINS Staff Publications 2024
-
Recent non-marine ostracods (Crustacea) from New Caledonia (Melanesia, Pacific Ocean)
-
The New Caledonian Archipelago is a hot spot for biodiversity and endemism. Here, we report on new records of nine species from localities on the main island, Grande Terre, and illustrate these: Ilyodromus viridulus (Brady, 1886), Stenocypris hislopi Ferguson, 1969, S. macedonica Petkovski & Meisch, 1996¸ S. malayica Victor & Fernando, 1981, Bradleytriebella lineata (Victor & Fernando, 1981), Hemicypris pyxidata (Moniez, 1892), Heterocypris incongruens (Ramdohr, 1808), Cypridopis vidua (O.F. Müller, 1776) and Limnocythere stationis Vávra, 1891. We also provide redescriptions and illustrations of the valves and carapace of Stenocypris marginata Daday, 1910 sensu Méhes, 1939, Cypris granulata Daday, 1898 and Kennethia major (Méhes, 1939); for the latter species also including some soft parts. Therefore, twenty two certain species have thus far been reported from the New Caledonian Archipelago. The status of seven uncertain species is also discussed. Previous records of Stenocypris major (Baird, 1859) from Grande Terre, mainly by Méhes, are here considered to belong to S. hislopi. We propose to reject the presence of Cyprinotus cingalensis Brady, 1886 in New Caledonia and suggest to consider Cypridopsis sarasini Méhes, 1939 as an “uncertain species” (sensu Meisch et al. 2019). We also argue that Eucypris wolffhuegeli Méhes, 1914 might be a synonym of H. incongruens and suggest that Strandesia rouxi Méhes, 1939 might be considered a junior synonym of an existing species, pending further research.
Located in
Library
/
RBINS Staff Publications 2024
-
High water temperature significantly influences swimming performance of New Zealand migratory species
-
Anthropogenic structures in freshwater systems pose a significant threat by fragmenting habitats. Effective fish passage solutions must consider how environmental changes introduce variability into swimming performance. As temperature is considered the most important external factor influencing fish physiology, it is especially important to consider its effects on fish swimming performance. Even minor alterations in water properties, such as temperature and velocity, can profoundly affect fish metabolic demands, foraging behaviours, fitness and, consequently, swimming performance and passage success. In this study, we investigated the impact of varying water temperatures on the critical swimming speeds of four migratory New Zealand species. Our findings revealed a significant reduction in critical swimming speeds at higher water temperatures (26°C) compared to lower ones (8 and 15°C) for three out of four species (Galaxias maculatus, Galaxias brevipinnis and Gobiomorphus cotidianus). In contrast, Galaxias fasciatus exhibited no significant temperature-related changes in swimming performance, suggesting species-specific responses to temperature. The cold temperature treatment did not impact swimming performance for any of the studied species. As high water temperatures significantly reduce fish swimming performance, it is important to ensure that fish passage solutions are designed to accommodate a range of temperature changes, including spatial and temporal changes, ranging from diel to decadal fluctuations. Our research underscores the importance of incorporating temperature effects into fish passage models for habitat restoration, connectivity initiatives, and freshwater fish conservation. The influence of temperature on fish swimming performance can alter migration patterns and population dynamics, highlighting the need for adaptive conservation strategies. To ensure the resilience of freshwater ecosystems it is important to account for the impact of temperature on fish swimming performance, particularly in the context of a changing climate.
Located in
Library
/
RBINS Staff Publications 2024
-
Authorship and date of five family-series nomina in Oligochaeta (Annelida): Lumbricidae, Naididae, Enchytraeidae, Tubificidae and Lumbriculidae
-
Located in
Library
/
RBINS Staff Publications 2021
-
A Paleocene occurrence of cornelian cherries Cornus subg. Cornus in the land-mammal site of Berru (Paris Basin, France)
-
Cornus subgenus Cornus, also called cornelian cherries, is a relatively ancient clade of dogwoods with a complex biogeographic history. Their fossil record attests to a distribution in North America during the Late Cretaceous and Paleocene, whereas the earliest fossil record in Europe is dated as early as the Eocene. Here, we describe a new occurrence of cornelian cherries based on permineralized endocarps from the late Paleocene (ca. 58 Ma) land-mammal locality of Berru, in Northwest France. The 48 studied specimens possess characteristic cornelian cherry endocarp morphology with locules associated with a dorsal germination valve, no central vascularization, and the presence of numerous secretory cavities in the endocarp wall. In addition, the presence of (three)-four locules and a large apical depression strongly suggest affinities with the early Eocene species Cornus multilocularis from the London Clay Formation. This new occurrence expands the stratigraphic range of the species by approximately four to six million years and is the first unequivocal evidence of cornelian cherries in Europe during the Paleocene. The biogeographical history of cornelian cherries remains complex to explore because of its ancient distribution in the Cretaceous and a geographically and stratigraphically patchy Cenozoic record.
Located in
Library
/
RBINS Staff Publications 2025