Bacterial endosymbionts of the groups Wolbachia , Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia , ‘Candidatus Tisiphia’ (formerly Torix group Rickettsia ), Cardinium and Rhabdochlamydia . Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host–endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia , ‘Ca. Tisiphia’ and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium , ‘Ca. Tisiphia’ and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary ‘contact-tracing’ tool.
Located in
Library
/
RBINS Staff Publications 2023
Information on the embryonic development of the malleate trophi in Epiphanidae (Rotifera, Monogononta, Ploima) is presented, based on scanning electron microscopy observations in Rhinoglena fertoeensis, R. frontalis, R. kutikovae, R. tokioensis, and Proalides tentaculatus, to contribute to the understanding of this structure of high evolutionary and functional relevance in Rotifera. The first observable and distinctly sclerotized structures were a double row of median transversal sclerites along the longitudinal axis, wherein the future unci, rostellar scleropili, cristae rami, and basal apophyses became recognizable. Fulcrum and manubria arose subsequently; the fulcrum sclerites were longitudinally ordered in a double layer. The rami chambers developed last as lamellar structures. Unci appeared as separate thin, elongate elements, the primary uncini, developing to uncus plates by transversal growth and apposition of sclerite material on the shafts of the uncini. The heads of the uncini showed their greatest development after fusion of their shafts into uncus plates. The interjacent spaces between the heads functioned as a mold, organizing bundles of sclerites which developed into the uniseriate, zigzag-shaped cristae rami. The fulcrum attained its definite shape by elongation of the double layer of rod-shaped sclerites into appressed sclerofibrillae. Manubria became visible as a proximal ridge of sclerites, whereupon a triangular lamella composed of crisscross-oriented sclerites developed distally, growing out to the manubrial chambers. Ramus chambers originated from two longitudinal amorphous lamellae incorporating the median rami sclerites and closing from distal to proximal; subbasal chambers were formed before the basal chambers.
Located in
Library
/
RBINS Staff Publications 2017